IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v6y1972i4p419-439.html
   My bibliography  Save this article

Application of Kalman Filtering to the Surveillance and Control of Traffic Systems

Author

Listed:
  • Michael W. Szeto

    (Massachusetts Institute of Technology, Cambridge, Massachusetts)

  • Denos C. Gazis

    (IBM Watson Research Center, Yorktown Heights, New York)

Abstract

The methodology of the discrete-time, extended Kalman filter is applied for the estimation of densities and the control of critical traffic links. The methodology is tested using traffic data obtained at the Lincoln tunnel of New York City. Two algorithms are tested, one involving density estimation alone and one combining density estimation with a formalism for the determination of optimal control. The results indicate that the first algorithm gives very good density estimates. The second algorithm yields a less accurate density estimate, but has the advantage over the first that it is amenable to an analytical optimization investigation.

Suggested Citation

  • Michael W. Szeto & Denos C. Gazis, 1972. "Application of Kalman Filtering to the Surveillance and Control of Traffic Systems," Transportation Science, INFORMS, vol. 6(4), pages 419-439, November.
  • Handle: RePEc:inm:ortrsc:v:6:y:1972:i:4:p:419-439
    DOI: 10.1287/trsc.6.4.419
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.6.4.419
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.6.4.419?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Fangfang & Jabari, Saif Eddin & Liu, Henry X. & Lin, DianChao, 2018. "Traffic state estimation using stochastic Lagrangian dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 143-165.
    2. Ngoduy, D., 2008. "Applicable filtering framework for online multiclass freeway network estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 599-616.
    3. Sheu, Jiuh-Biing & Chou, Yi-Hwa & Shen, Liang-Jen, 2001. "A stochastic estimation approach to real-time prediction of incident effects on freeway traffic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 35(6), pages 575-592, July.
    4. Yuan, Yun & Zhang, Zhao & Yang, Xianfeng Terry & Zhe, Shandian, 2021. "Macroscopic traffic flow modeling with physics regularized Gaussian process: A new insight into machine learning applications in transportation," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 88-110.
    5. Jabari, Saif Eddin & Liu, Henry X., 2013. "A stochastic model of traffic flow: Gaussian approximation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 15-41.
    6. Gazis, Denos & Liu, Chiu, 2003. "Kalman filtering estimation of traffic counts for two network links in tandem," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 737-745, September.
    7. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    8. Wang, Yibing & Papageorgiou, Markos, 2005. "Real-time freeway traffic state estimation based on extended Kalman filter: a general approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 141-167, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:6:y:1972:i:4:p:419-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.