IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2110.07224.html
   My bibliography  Save this paper

Choice probabilities and correlations in closed-form route choice models: specifications and drawbacks

Author

Listed:
  • Fiore Tinessa
  • Vittorio Marzano
  • Andrea Papola

Abstract

This paper investigates the performance, in terms of choice probabilities and correlations, of existing and new specifications of closed-form route choice models with flexible correlation patterns, namely the Link Nested Logit (LNL), the Paired Combinatorial Logit (PCL) and the more recent Combination of Nested Logit (CoNL) models. Following a consolidated track in the literature, choice probabilities and correlations of the Multinomial Probit (MNP) model by (Daganzo and Sheffi, 1977) are taken as target. Laboratory experiments on small/medium-size networks are illustrated, also leveraging a procedure for practical calculation of correlations of any GEV models, proposed by (Marzano 2014). Results show that models with inherent limitations in the coverage of the domain of feasible correlations yield unsatisfactory performance, whilst the specifications of the CoNL proposed in the paper appear the best in fitting both MNP correlations and probabilities. Performance of the models are appreciably ameliorated by introducing lower bounds to the nesting parameters. Overall, the paper provides guidance for the practical application of tested models.

Suggested Citation

  • Fiore Tinessa & Vittorio Marzano & Andrea Papola, 2021. "Choice probabilities and correlations in closed-form route choice models: specifications and drawbacks," Papers 2110.07224, arXiv.org.
  • Handle: RePEc:arx:papers:2110.07224
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2110.07224
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar & Rivas, Ana, 2008. "Closed form expressions for choice probabilities in the Weibull case," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 373-380, May.
    2. Papola, Andrea & Tinessa, Fiore & Marzano, Vittorio, 2018. "Application of the Combination of Random Utility Models (CoRUM) to route choice," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 304-326.
    3. Frejinger, E. & Bierlaire, M., 2007. "Capturing correlation with subnetworks in route choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 363-378, March.
    4. Mai, Tien & Fosgerau, Mogens & Frejinger, Emma, 2015. "A nested recursive logit model for route choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 100-112.
    5. Abbe, E. & Bierlaire, M. & Toledo, T., 2007. "Normalization and correlation of cross-nested logit models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 795-808, August.
    6. Xu, Xiangdong & Chen, Anthony & Kitthamkesorn, Songyot & Yang, Hai & Lo, Hong K., 2015. "Modeling absolute and relative cost differences in stochastic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 686-703.
    7. Daly, Andrew & Bierlaire, Michel, 2006. "A general and operational representation of Generalised Extreme Value models," Transportation Research Part B: Methodological, Elsevier, vol. 40(4), pages 285-305, May.
    8. Mai, Tien, 2016. "A method of integrating correlation structures for a generalized recursive route choice model," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 146-161.
    9. Marzano, Vittorio & Papola, Andrea, 2008. "On the covariance structure of the Cross-Nested Logit model," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 83-98, February.
    10. Horowitz, Joel L., 1991. "Reconsidering the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 433-438, December.
    11. Carlos F. Daganzo & Yosef Sheffi, 1977. "On Stochastic Models of Traffic Assignment," Transportation Science, INFORMS, vol. 11(3), pages 253-274, August.
    12. Marzano, Vittorio, 2014. "A simple procedure for the calculation of the covariances of any Generalized Extreme Value model," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 151-162.
    13. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    2. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    3. Papola, Andrea & Tinessa, Fiore & Marzano, Vittorio, 2018. "Application of the Combination of Random Utility Models (CoRUM) to route choice," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 304-326.
    4. Duncan, Lawrence Christopher & Watling, David Paul & Connors, Richard Dominic & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2020. "Path Size Logit route choice models: Issues with current models, a new internally consistent approach, and parameter estimation on a large-scale network with GPS data," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 1-40.
    5. Gu, Yu & Chen, Anthony & Kitthamkesorn, Songyot, 2022. "Weibit choice models: Properties, mode choice application and graphical illustrations," Journal of choice modelling, Elsevier, vol. 44(C).
    6. Oyama, Yuki & Hara, Yusuke & Akamatsu, Takashi, 2022. "Markovian traffic equilibrium assignment based on network generalized extreme value model," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 135-159.
    7. Mogens Fosgerau & Nikolaj Nielsen & Mads Paulsen & Thomas Kj{ae}r Rasmussen & Rui Yao, 2024. "Substitution in the perturbed utility route choice model," Papers 2409.08347, arXiv.org.
    8. Marzano, Vittorio & Papola, Andrea & Simonelli, Fulvio & Vitillo, Roberta, 2013. "A practically tractable expression of the covariances of the Cross-Nested Logit model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 1-11.
    9. Papola, Andrea, 2016. "A new random utility model with flexible correlation pattern and closed-form covariance expression: The CoRUM," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 80-96.
    10. Mai, Tien & Frejinger, Emma & Fosgerau, Mogens & Bastin, Fabian, 2017. "A dynamic programming approach for quickly estimating large network-based MEV models," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 179-197.
    11. Mai, Tien & Bastin, Fabian & Frejinger, Emma, 2017. "On the similarities between random regret minimization and mother logit: The case of recursive route choice models," Journal of choice modelling, Elsevier, vol. 23(C), pages 21-33.
    12. Xu, Xiangdong & Chen, Anthony & Kitthamkesorn, Songyot & Yang, Hai & Lo, Hong K., 2015. "Modeling absolute and relative cost differences in stochastic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 686-703.
    13. Du, Muqing & Tan, Heqing & Chen, Anthony, 2021. "A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models," European Journal of Operational Research, Elsevier, vol. 290(3), pages 982-999.
    14. Sener, Ipek N. & Pendyala, Ram M. & Bhat, Chandra R., 2011. "Accommodating spatial correlation across choice alternatives in discrete choice models: an application to modeling residential location choice behavior," Journal of Transport Geography, Elsevier, vol. 19(2), pages 294-303.
    15. Kazagli, Evanthia & Bierlaire, Michel & Flötteröd, Gunnar, 2016. "Revisiting the route choice problem: A modeling framework based on mental representations," Journal of choice modelling, Elsevier, vol. 19(C), pages 1-23.
    16. Hung Tran & Tien Mai, 2023. "Network-based Representations and Dynamic Discrete Choice Models for Multiple Discrete Choice Analysis," Papers 2306.04606, arXiv.org.
    17. Oyama, Yuki & Hato, Eiji, 2019. "Prism-based path set restriction for solving Markovian traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 528-546.
    18. Mai, Tien, 2016. "A method of integrating correlation structures for a generalized recursive route choice model," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 146-161.
    19. Marzano, Vittorio, 2014. "A simple procedure for the calculation of the covariances of any Generalized Extreme Value model," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 151-162.
    20. Kitthamkesorn, Songyot & Chen, Anthony, 2017. "Alternate weibit-based model for assessing green transport systems with combined mode and route travel choices," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 291-310.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2110.07224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.