IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v24y1990i2p111-132.html
   My bibliography  Save this article

Control of freeway traffic flow by variable speed signs

Author

Listed:
  • Smulders, Stef

Abstract

In this paper a freeway traffic control problem is considered. Control is exerted by means of the variable speed signs of the Dutch Motorway Control and Signalling System. After determining an important effect of the advisory speed signals on driver behaviour, a model for traffic in one section of a freeway is presented and its stability properties are investigated. Based on this model a hysteresis type control policy is proposed that optimizes the throughput of the freeway section and succeeds in postponing congestion. The latter is illustrated by means of a simulation.

Suggested Citation

  • Smulders, Stef, 1990. "Control of freeway traffic flow by variable speed signs," Transportation Research Part B: Methodological, Elsevier, vol. 24(2), pages 111-132, April.
  • Handle: RePEc:eee:transb:v:24:y:1990:i:2:p:111-132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0191-2615(90)90023-R
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minh Sang Pham Do & Ketoma Vix Kemanji & Man Dinh Vinh Nguyen & Tuan Anh Vu & Gerrit Meixner, 2023. "The Action Point Angle of Sight: A Traffic Generation Method for Driving Simulation, as a Small Step to Safe, Sustainable and Smart Cities," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    2. Ioannou, Petros & Zhang, Yihang & Zhao, Yanbo, 2016. "Traffic Flow Models and Impact of Combined Lane Change and Speed Limit Control on Environment in Case of High Truck Traffic Volumes," Institute of Transportation Studies, Working Paper Series qt0d33t3j6, Institute of Transportation Studies, UC Davis.
    3. Hiribarren, Gabriel & Herrera, Juan Carlos, 2014. "Real time traffic states estimation on arterials based on trajectory data," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 19-30.
    4. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2019. "Continuous-time general link transmission model with simplified fanning, Part I: Theory and link model formulation," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 442-470.
    5. Taniguchi, Yohei & Nishi, Ryosuke & Ezaki, Takahiro & Nishinari, Katsuhiro, 2015. "Jam-absorption driving with a car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 304-315.
    6. Rodrigo C. Carlson & Ioannis Papamichail & Markos Papageorgiou & Albert Messmer, 2010. "Optimal Motorway Traffic Flow Control Involving Variable Speed Limits and Ramp Metering," Transportation Science, INFORMS, vol. 44(2), pages 238-253, May.
    7. Xiang Wang & Po Zhao & Yanyun Tao, 2018. "Evaluating Impacts of Overloaded Heavy Vehicles on Freeway Traffic Condition by a Novel Multi-Class Traffic Flow Model," Sustainability, MDPI, vol. 10(12), pages 1-22, December.
    8. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2023. "General solution scheme for the static link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 108-135.
    9. Jun Niu & Shan Lin & Erlong Lou & Zongdian Li & Kaiqun Chen & Haijian Li, 2022. "Design and Simulation of a Variable Speed Limit System for Freeway Bottleneck Areas," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    10. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2020. "Static traffic assignment with residual queues and spillback," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 303-319.
    11. Storm, Pieter Jacob & Mandjes, Michel & van Arem, Bart, 2022. "Efficient evaluation of stochastic traffic flow models using Gaussian process approximation," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 126-144.
    12. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Continuous-time general link transmission model with simplified fanning, Part II: Event-based algorithm for networks," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 471-501.
    13. Yuan, Naitong & Ma, Minghui & Liang, Shidong & Wang, Wenjie & Zhang, Hu, 2022. "Optimal control method of freeway based on tollbooths lane configuration and variable speed limit control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    14. Han, Youngjun & Chen, Danjue & Ahn, Soyoung, 2017. "Variable speed limit control at fixed freeway bottlenecks using connected vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 113-134.
    15. Liu, Wei & Yin, Yafeng & Yang, Hai, 2015. "Effectiveness of variable speed limits considering commuters’ long-term response," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 498-519.
    16. Rockwell International Science Center, 1992. "Potential Payoffs From Ivhs: A Framework For Analysis," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7gf7j8n2, Institute of Transportation Studies, UC Berkeley.
    17. MartĂ­nez, Irene & Jin, Wen-Long, 2020. "Optimal location problem for variable speed limit application areas," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 221-246.
    18. Yuan, Tianchen & Ioannou, Petros A., 2023. "Coordinated Traffic Flow Control in a Connected Environment," Institute of Transportation Studies, Working Paper Series qt6q67f9z4, Institute of Transportation Studies, UC Davis.
    19. Nishi, Ryosuke & Tomoeda, Akiyasu & Shimura, Kenichiro & Nishinari, Katsuhiro, 2013. "Theory of jam-absorption driving," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 116-129.
    20. Chen, Danjue & Ahn, Soyoung & Hegyi, Andreas, 2014. "Variable speed limit control for steady and oscillatory queues at fixed freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 340-358.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:24:y:1990:i:2:p:111-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.