IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4694-d189341.html
   My bibliography  Save this article

Evaluating Impacts of Overloaded Heavy Vehicles on Freeway Traffic Condition by a Novel Multi-Class Traffic Flow Model

Author

Listed:
  • Xiang Wang

    (School of Rail Transportation, Soochow University, No.8 Jixue Road, Suzhou 215000, China)

  • Po Zhao

    (School of Rail Transportation, Soochow University, No.8 Jixue Road, Suzhou 215000, China)

  • Yanyun Tao

    (School of Rail Transportation, Soochow University, No.8 Jixue Road, Suzhou 215000, China)

Abstract

Overloaded heavy vehicles (HVs) have significant negative impacts on traffic conditions due to their inferior driving performance. Highway authorities need to understand the impact of overloaded HVs to assess traffic conditions and set management strategies. We propose a multi-class traffic flow model based on Smulders fundamental diagram to analyze the influence of overloaded HVs on traffic conditions. The relationship between the overloading ratio and maximum speed is established by freeway toll collection data for different types of HVs. Dynamic passenger car equivalent factors are introduced to represent the various impacts of overloaded HVs in different traffic flow patterns. The model is solved analytically and discussed in detail in the appendices. The model validation results show that the proposed model can represent traffic conditions more accurately with consideration for overloaded HVs. The scenario tests indicate that the increase of overloaded HVs leads to both a higher congestion level and longer duration.

Suggested Citation

  • Xiang Wang & Po Zhao & Yanyun Tao, 2018. "Evaluating Impacts of Overloaded Heavy Vehicles on Freeway Traffic Condition by a Novel Multi-Class Traffic Flow Model," Sustainability, MDPI, vol. 10(12), pages 1-22, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4694-:d:189341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4694/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4694/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ngoduy, D. & Liu, R., 2007. "Multiclass first-order simulation model to explain non-linear traffic phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 667-682.
    2. Daganzo, Carlos F., 2002. "A behavioral theory of multi-lane traffic flow. Part I: Long homogeneous freeway sections," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 131-158, February.
    3. Qu, Xiaobo & Wang, Shuaian & Zhang, Jin, 2015. "On the fundamental diagram for freeway traffic: A novel calibration approach for single-regime models," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 91-102.
    4. Smulders, Stef, 1990. "Control of freeway traffic flow by variable speed signs," Transportation Research Part B: Methodological, Elsevier, vol. 24(2), pages 111-132, April.
    5. Qu, Xiaobo & Zhang, Jin & Wang, Shuaian, 2017. "On the stochastic fundamental diagram for freeway traffic: Model development, analytical properties, validation, and extensive applications," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 256-271.
    6. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    7. Logghe, S. & Immers, L.H., 2008. "Multi-class kinematic wave theory of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 523-541, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changyin Dong & Hao Wang & Quan Chen & Daiheng Ni & Ye Li, 2019. "Simulation-Based Assessment of Multilane Separate Freeways at Toll Station Area: A Case Study from Huludao Toll Station on Shenshan Freeway," Sustainability, MDPI, vol. 11(11), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Storm, Pieter Jacob & Mandjes, Michel & van Arem, Bart, 2022. "Efficient evaluation of stochastic traffic flow models using Gaussian process approximation," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 126-144.
    2. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    3. (Sean) Qian, Zhen & Li, Jia & Li, Xiaopeng & Zhang, Michael & Wang, Haizhong, 2017. "Modeling heterogeneous traffic flow: A pragmatic approach," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 183-204.
    4. Yibing Wang & Long Wang & Xianghua Yu & Jingqiu Guo, 2023. "Capacity Drop at Freeway Ramp Merges with Its Replication in Macroscopic and Microscopic Traffic Simulations: A Tutorial Report," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    5. Ahmed, Afzal & Ngoduy, Dong & Adnan, Muhammad & Baig, Mirza Asad Ullah, 2021. "On the fundamental diagram and driving behavior modeling of heterogeneous traffic flow using UAV-based data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 100-115.
    6. Minh Sang Pham Do & Ketoma Vix Kemanji & Man Dinh Vinh Nguyen & Tuan Anh Vu & Gerrit Meixner, 2023. "The Action Point Angle of Sight: A Traffic Generation Method for Driving Simulation, as a Small Step to Safe, Sustainable and Smart Cities," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    7. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    8. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    9. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    10. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    11. Yang, Haifei & Lu, Jian & Hu, Xiaojian & Jiang, Jun, 2013. "A cellular automaton model based on empirical observations of a driver’s oscillation behavior reproducing the findings from Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4009-4018.
    12. Maiti, Nandan & Laval, Jorge A. & Chilukuri, Bhargava Rama, 2024. "Universality of area occupancy-based fundamental diagrams in mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    13. Yin, Ruyang & Zheng, Nan & Liu, Zhiyuan, 2022. "Estimating fundamental diagram for multi-modal signalized urban links with limited probe data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    14. Li, Jia & Chen, Di & Zhang, Michael, 2022. "Equilibrium modeling of mixed autonomy traffic flow based on game theory," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 110-127.
    15. Yuan, Tianchen & Ioannou, Petros A., 2023. "Coordinated Traffic Flow Control in a Connected Environment," Institute of Transportation Studies, Working Paper Series qt6q67f9z4, Institute of Transportation Studies, UC Davis.
    16. Zhang, Jin & Qu, Xiaobo & Wang, Shuaian, 2018. "Reproducible generation of experimental data sample for calibrating traffic flow fundamental diagram," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 41-52.
    17. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs & Qu, Xiaobo, 2020. "Public transport trajectory planning with probabilistic guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 81-101.
    18. Nair, Rahul & Mahmassani, Hani S. & Miller-Hooks, Elise, 2011. "A porous flow approach to modeling heterogeneous traffic in disordered systems," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1331-1345.
    19. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    20. Coifman, Benjamin & Ponnu, Balaji & El Asmar, Paul, 2023. "LWR and shockwave analysis - Failures under a concave fundamental diagram and unexpected induced disturbances," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4694-:d:189341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.