IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v189y2024ics0191261524001383.html
   My bibliography  Save this article

Providing real-time en-route suggestions to CAVs for congestion mitigation: A two-way deep reinforcement learning approach

Author

Listed:
  • Ma, Xiaoyu
  • He, Xiaozheng

Abstract

This research investigates the effectiveness of information provision for congestion reduction in Connected Autonomous Vehicle (CAV) systems. The inherent advantages of CAVs, such as vehicle-to-everything communication, advanced vehicle autonomy, and reduced human involvement, make them conducive to achieving Correlated Equilibrium (CE). Leveraging these advantages, this research proposes a reinforcement learning framework involving CAVs and an information provider, where CAVs conduct real-time learning to minimize their individual travel time, while the information provider offers real-time route suggestions aiming to minimize the system’s total travel time. The en-route routing problem of the CAVs is formulated as a Markov game and the information provision problem is formulated as a single-agent Markov decision process. Then, this research develops a customized two-way deep reinforcement learning approach to solve the interrelated problems, accounting for their unique characteristics. Moreover, CE has been formulated within the proposed framework. Theoretical analysis rigorously proves the realization of CE and that the proposed framework can effectively mitigate congestion without compromising individual user optimality. Numerical results demonstrate the effectiveness of this approach. Our research contributes to the advancement of congestion reduction strategies in CAV systems with the mitigation of the conflict between system-level and individual-level goals using CE as a theoretical foundation. The results highlight the potential of information provision in fostering coordination and correlation among CAVs, thereby enhancing traffic efficiency and achieving system-level goals in smart transportation.

Suggested Citation

  • Ma, Xiaoyu & He, Xiaozheng, 2024. "Providing real-time en-route suggestions to CAVs for congestion mitigation: A two-way deep reinforcement learning approach," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:transb:v:189:y:2024:i:c:s0191261524001383
    DOI: 10.1016/j.trb.2024.103014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524001383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.103014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:189:y:2024:i:c:s0191261524001383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.