IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v185y2024ics0191261524001097.html
   My bibliography  Save this article

Estimation of discrete choice models with error in variables: An application to revealed preference data with aggregate service level variables

Author

Listed:
  • Batarce, Marco

Abstract

This article proposes a method to estimate disaggregated discrete choice models with errors in the variables. The objective is to estimate the discrete choice models' coefficients to compute the value of time and use it for cost-benefit analysis in transportation planning. The method is general, as it only requires a validation sample to estimate the conditional density of the error-free variables given the mismeasured variables. More specifically, we assume that the attributes of the chosen alternative are reported without error in revealed preference surveys, and we use this information as the validation sample. The mismeasured variables may be spatially aggregate service levels from mobility surveys or transportation network models. Monte Carlo simulations show that the proposed method substantially reduces bias in parameters. We validate the technique with two real data sets from Santiago, Chile.

Suggested Citation

  • Batarce, Marco, 2024. "Estimation of discrete choice models with error in variables: An application to revealed preference data with aggregate service level variables," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:transb:v:185:y:2024:i:c:s0191261524001097
    DOI: 10.1016/j.trb.2024.102985
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524001097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.102985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gaudry, Marc J. I. & Jara-Diaz, Sergio R. & Ortuzar, Juan de Dios, 1989. "Value of time sensitivity to model specification," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 151-158, April.
    2. Eddelbuettel, Dirk & Sanderson, Conrad, 2014. "RcppArmadillo: Accelerating R with high-performance C++ linear algebra," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1054-1063.
    3. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, November.
    4. Yingyao Hu & Geert Ridder, 2012. "Estimation of nonlinear models with mismeasured regressors using marginal information," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(3), pages 347-385, April.
    5. Guevara, C. Angelo, 2015. "Critical assessment of five methods to correct for endogeneity in discrete-choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 240-254.
    6. Benaglia, Tatiana & Chauveau, Didier & Hunter, David R. & Young, Derek S., 2009. "mixtools: An R Package for Analyzing Mixture Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i06).
    7. Susanne M. Schennach, 2016. "Recent Advances in the Measurement Error Literature," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 341-377, October.
    8. Varela, Juan Manuel Lorenzo & Börjesson, Maria & Daly, Andrew, 2018. "Quantifying errors in travel time and cost by latent variables," Working papers in Transport Economics 2018:3, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    9. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843, Elsevier.
    10. Hoderlein, Stefan & Winter, Joachim, 2010. "Structural measurement errors in nonseparable models," Journal of Econometrics, Elsevier, vol. 157(2), pages 432-440, August.
    11. Hyslop, Dean R & Imbens, Guido W, 2001. "Bias from Classical and Other Forms of Measurement Error," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 475-481, October.
    12. Newey, Whitney K., 1994. "Kernel Estimation of Partial Means and a General Variance Estimator," Econometric Theory, Cambridge University Press, vol. 10(2), pages 1-21, June.
    13. Javier Escobal & Sonia Laszlo, 2008. "Measurement Error in Access to Markets," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(2), pages 209-243, April.
    14. Nirmale, Sangram Krishna & Pinjari, Abdul Rawoof, 2023. "Discrete choice models with multiplicative stochasticity in choice environment variables: Application to accommodating perception errors in driver behaviour models," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 169-193.
    15. Basit Zafar, 2011. "Can subjective expectations data be used in choice models? evidence on cognitive biases," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(3), pages 520-544, April.
    16. Börjesson, Maria & Eliasson, Jonas, 2014. "Experiences from the Swedish Value of Time study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 144-158.
    17. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    18. Vij, Akshay & Walker, Joan L., 2016. "How, when and why integrated choice and latent variable models are latently useful," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 192-217.
    19. Xiaohong Chen & Han Hong & Elie Tamer, 2005. "Measurement Error Models with Auxiliary Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(2), pages 343-366.
    20. Eddelbuettel, Dirk & Francois, Romain, 2011. "Rcpp: Seamless R and C++ Integration," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i08).
    21. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.
    22. Guevara, C. Angelo & Tirachini, Alejandro & Hurtubia, Ricardo & Dekker, Thijs, 2020. "Correcting for endogeneity due to omitted crowding in public transport choice using the Multiple Indicator Solution (MIS) method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 472-484.
    23. Kibrom A. Abay & Leah E. M. Bevis & Christopher B. Barrett, 2021. "Measurement Error Mechanisms Matter: Agricultural Intensification with Farmer Misperceptions and Misreporting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(2), pages 498-522, March.
    24. Kouwenhoven, Marco & de Jong, Gerard C. & Koster, Paul & van den Berg, Vincent A.C. & Verhoef, Erik T. & Bates, John & Warffemius, Pim M.J., 2014. "New values of time and reliability in passenger transport in The Netherlands," Research in Transportation Economics, Elsevier, vol. 47(C), pages 37-49.
    25. Axhausen, Kay W. & Hess, Stephane & König, Arnd & Abay, Georg & Bates, John J. & Bierlaire, Michel, 2008. "Income and distance elasticities of values of travel time savings: New Swiss results," Transport Policy, Elsevier, vol. 15(3), pages 173-185, May.
    26. Ilka Dubernet & Kay W. Axhausen, 2020. "The German value of time and value of reliability study: the survey work," Transportation, Springer, vol. 47(3), pages 1477-1513, June.
    27. Díaz, Federico & Cantillo, Víctor & Arellana, Julian & Ortúzar, Juan de Dios, 2015. "Accounting for stochastic variables in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 222-237.
    28. Varela, Juan Manuel Lorenzo & Börjesson, Maria & Daly, Andrew, 2018. "Quantifying errors in travel time and cost by latent variables," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 520-541.
    29. Gopalakrishnan, Raja & Guevara, C. Angelo & Ben-Akiva, Moshe, 2020. "Combining multiple imputation and control function methods to deal with missing data and endogeneity in discrete-choice models," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 45-57.
    30. Arne Henningsen & Ott Toomet, 2011. "maxLik: A package for maximum likelihood estimation in R," Computational Statistics, Springer, vol. 26(3), pages 443-458, September.
    31. Manski, Charles F & Lerman, Steven R, 1977. "The Estimation of Choice Probabilities from Choice Based Samples," Econometrica, Econometric Society, vol. 45(8), pages 1977-1988, November.
    32. Biswas, Mehek & Bhat, Chandra R. & Ghosh, Sulagna & Pinjari, Abdul Rawoof, 2024. "Choice models with stochastic variables and random coefficients," Journal of choice modelling, Elsevier, vol. 51(C).
    33. Duong, Tarn, 2007. "ks: Kernel Density Estimation and Kernel Discriminant Analysis for Multivariate Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i07).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biswas, Mehek & Bhat, Chandra R. & Ghosh, Sulagna & Pinjari, Abdul Rawoof, 2024. "Choice models with stochastic variables and random coefficients," Journal of choice modelling, Elsevier, vol. 51(C).
    2. Stephane Hess & Andrew Daly & Maria Börjesson, 2020. "A critical appraisal of the use of simple time-money trade-offs for appraisal value of travel time measures," Transportation, Springer, vol. 47(3), pages 1541-1570, June.
    3. Thomas E. Guerrero & C. Angelo Guevara & Elisabetta Cherchi & Juan de Dios Ortúzar, 2021. "Addressing endogeneity in strategic urban mode choice models," Transportation, Springer, vol. 48(4), pages 2081-2102, August.
    4. Song, Suyong, 2015. "Semiparametric estimation of models with conditional moment restrictions in the presence of nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 95-109.
    5. Hu, Yingyao, 2017. "The econometrics of unobservables: Applications of measurement error models in empirical industrial organization and labor economics," Journal of Econometrics, Elsevier, vol. 200(2), pages 154-168.
    6. Lin, Zhongjian & Hu, Yingyao, 2024. "Binary choice with misclassification and social interactions, with an application to peer effects in attitude," Journal of Econometrics, Elsevier, vol. 238(1).
    7. Varela, Juan Manuel Lorenzo & Börjesson, Maria & Daly, Andrew, 2018. "Quantifying errors in travel time and cost by latent variables," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 520-541.
    8. Biswas, Mehek & Bhat, Chandra R. & Pinjari, Abdul Rawoof, 2024. "The use of pooled RP-SP choice data to simultaneously identify alternative attributes and random coefficients on those attributes," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    9. Varela, Juan Manuel Lorenzo & Börjesson, Maria & Daly, Andrew, 2018. "Quantifying errors in travel time and cost by latent variables," Working papers in Transport Economics 2018:3, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    10. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers 41/12, Institute for Fiscal Studies.
    11. Davezies, Laurent & Le Barbanchon, Thomas, 2017. "Regression discontinuity design with continuous measurement error in the running variable," Journal of Econometrics, Elsevier, vol. 200(2), pages 260-281.
    12. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    13. Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," JRFM, MDPI, vol. 13(11), pages 1-24, November.
    14. Kingsley Adjenughwure & Basil Papadopoulos, 2019. "Towards a Fair and More Transparent Rule-Based Valuation of Travel Time Savings," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    15. Dennis Kristensen, 2009. "Semiparametric Modelling and Estimation: A Selective Overview," CREATES Research Papers 2009-44, Department of Economics and Business Economics, Aarhus University.
    16. Gutknecht, Daniel, 2011. "Nonclassical Measurement Error in a Nonlinear (Duration) Model," Economic Research Papers 270763, University of Warwick - Department of Economics.
    17. Pamela Giustinelli, 2016. "Group Decision Making With Uncertain Outcomes: Unpacking Child–Parent Choice Of The High School Track," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57(2), pages 573-602, May.
    18. Yingyao Hu & Geert Ridder, 2012. "Estimation of nonlinear models with mismeasured regressors using marginal information," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(3), pages 347-385, April.
    19. Daniel Wilhelm, 2018. "Testing for the presence of measurement error," CeMMAP working papers CWP45/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Hu, Yingyao, 2008. "Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution," Journal of Econometrics, Elsevier, vol. 144(1), pages 27-61, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:185:y:2024:i:c:s0191261524001097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.