Author
Listed:
- Shiri, Davood
- Akbari, Vahid
- Hassanzadeh, Ali
Abstract
The Capacitated Team Orienteering Problem (CTOP) is a challenging combinatorial optimization problem, wherein a fleet of vehicles traverses multiple locations, each with distinct prizes, demand weights, and service times. The primary objective is to determine optimal routes for the vehicles that collectively accumulate the highest total prize within capacity and time constraints. The CTOP finds applications across various domains such as disaster response, maintenance, marketing, tourism, and surveillance, where coordinated teams are required to efficiently explore and gather prizes from different sites. The complexity of this problem is further compounded by uncertainties in predicting specific attributes of each location, making it hard to plan routes accurately in advance. In numerous scenarios in practice, subjective predictions for these parameters may exist, but their precise values remain unknown until a location is visited by one of the vehicles. Given the unpredictable nature of these parameters, there is a pressing need for innovative online optimization strategies that can adapt to new information, ensuring the strategic allocation of resources and route planning within set constraints. To address this challenging online optimization problem, we offer a detailed analysis through the lens of theoretical and empirical competitive ratios. We derive an exact tight upper bound on the competitive ratio of online algorithms, and we introduce three novel online algorithms, with two of them achieving optimal competitive ratios. The third algorithm is a polynomial time approximation-based online algorithm with a competitive ratio of 13.53 times the tight upper bound. To evaluate our algorithms, we measure their empirical competitive ratios on randomly generated instances as well as instances from the literature. Our empirical analysis demonstrates the effectiveness of our solutions across a diverse range of simulation scenarios.
Suggested Citation
Shiri, Davood & Akbari, Vahid & Hassanzadeh, Ali, 2024.
"The Capacitated Team Orienteering Problem: An online optimization framework with predictions of unknown accuracy,"
Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
Handle:
RePEc:eee:transb:v:185:y:2024:i:c:s0191261524001085
DOI: 10.1016/j.trb.2024.102984
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:185:y:2024:i:c:s0191261524001085. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.