IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v68y2020i6p1787-1803.html
   My bibliography  Save this article

Algorithms for Online Matching, Assortment, and Pricing with Tight Weight-Dependent Competitive Ratios

Author

Listed:
  • Will Ma

    (Graduate School of Business, Columbia University, New York, New York 10027)

  • David Simchi-Levi

    (Institute for Data, Systems, and Society, Department of Civil and Environmental Engineering and Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Abstract

Motivated by the dynamic assortment offerings and item pricings occurring in e-commerce, we study a general problem of allocating finite inventories to heterogeneous customers arriving sequentially. We analyze this problem under the framework of competitive analysis, where the sequence of customers is unknown and does not necessarily follow any pattern. Previous work in this area, studying online matching, advertising, and assortment problems, has focused on the case where each item can only be sold at a single price, resulting in algorithms which achieve the best-possible competitive ratio of 1 − 1/ e . In this paper, we extend all of these results to allow for items having multiple feasible prices. Our algorithms achieve the best-possible weight-dependent competitive ratios, which depend on the sets of feasible prices given in advance. Our algorithms are also simple and intuitive; they are based on constructing a class of universal value functions that integrate the selection of items and prices offered. Finally, we test our algorithms on the publicly available hotel data set of Bodea et al. [Bodea T, Ferguson M, Garrow L (2009) Data set—Choice-based revenue management: Data from a major hotel chain. Manufacturing Service Oper. Management 11(2):356–361.], where there are multiple items (hotel rooms), each with multiple prices (fares at which the room could be sold). We find that applying our algorithms, as a hybrid with algorithms that attempt to forecast and learn the future transactions, results in the best performance.

Suggested Citation

  • Will Ma & David Simchi-Levi, 2020. "Algorithms for Online Matching, Assortment, and Pricing with Tight Weight-Dependent Competitive Ratios," Operations Research, INFORMS, vol. 68(6), pages 1787-1803, November.
  • Handle: RePEc:inm:oropre:v:68:y:2020:i:6:p:1787-1803
    DOI: 10.1287/opre.2019.1957
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2019.1957
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2019.1957?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yingjie Lan & Huina Gao & Michael O. Ball & Itir Karaesmen, 2008. "Revenue Management with Limited Demand Information," Management Science, INFORMS, vol. 54(9), pages 1594-1609, September.
    2. Garrett van Ryzin & Jeff McGill, 2000. "Revenue Management Without Forecasting or Optimization: An Adaptive Algorithm for Determining Airline Seat Protection Levels," Management Science, INFORMS, vol. 46(6), pages 760-775, June.
    3. Tudor Bodea & Mark Ferguson & Laurie Garrow, 2009. "Data Set--Choice-Based Revenue Management: Data from a Major Hotel Chain," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 356-361, December.
    4. Negin Golrezaei & Hamid Nazerzadeh & Paat Rusmevichientong, 2014. "Real-Time Optimization of Personalized Assortments," Management Science, INFORMS, vol. 60(6), pages 1532-1551, June.
    5. Yiwei Chen & Vivek F. Farias, 2013. "Simple Policies for Dynamic Pricing with Imperfect Forecasts," Operations Research, INFORMS, vol. 61(3), pages 612-624, June.
    6. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    7. Qian Liu & Garrett van Ryzin, 2008. "On the Choice-Based Linear Programming Model for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 288-310, October.
    8. Carri W. Chan & Vivek F. Farias, 2009. "Stochastic Depletion Problems: Effective Myopic Policies for a Class of Dynamic Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 333-350, May.
    9. Martin I. Reiman & Qiong Wang, 2008. "An Asymptotically Optimal Policy for a Quantity-Based Network Revenue Management Problem," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 257-282, May.
    10. Vahideh H. Manshadi & Shayan Oveis Gharan & Amin Saberi, 2012. "Online Stochastic Matching: Online Actions Based on Offline Statistics," Mathematics of Operations Research, INFORMS, vol. 37(4), pages 559-573, November.
    11. Dan Zhang & William L. Cooper, 2005. "Revenue Management for Parallel Flights with Customer-Choice Behavior," Operations Research, INFORMS, vol. 53(3), pages 415-431, June.
    12. Jeffrey P. Newman & Mark E. Ferguson & Laurie A. Garrow & Timothy L. Jacobs, 2014. "Estimation of Choice-Based Models Using Sales Data from a Single Firm," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 184-197, May.
    13. Huanan Zhang & Cong Shi & Chao Qin & Cheng Hua, 2016. "Stochastic regret minimization for revenue management problems with nonstationary demands," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(6), pages 433-448, September.
    14. Stefanus Jasin & Sunil Kumar, 2012. "A Re-Solving Heuristic with Bounded Revenue Loss for Network Revenue Management with Customer Choice," Mathematics of Operations Research, INFORMS, vol. 37(2), pages 313-345, May.
    15. Michael O. Ball & Maurice Queyranne, 2009. "Toward Robust Revenue Management: Competitive Analysis of Online Booking," Operations Research, INFORMS, vol. 57(4), pages 950-963, August.
    16. Dragos Florin Ciocan & Vivek Farias, 2012. "Model Predictive Control for Dynamic Resource Allocation," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 501-525, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Huili & Luo, Kelin & Xu, Yao & Xu, Yinfeng & Tong, Weitian, 2022. "Online crowdsourced truck delivery using historical information," European Journal of Operational Research, Elsevier, vol. 301(2), pages 486-501.
    2. Ali Aouad & Daniela Saban, 2023. "Online Assortment Optimization for Two-Sided Matching Platforms," Management Science, INFORMS, vol. 69(4), pages 2069-2087, April.
    3. Wang Chi Cheung & Will Ma & David Simchi-Levi & Xinshang Wang, 2022. "Inventory Balancing with Online Learning," Management Science, INFORMS, vol. 68(3), pages 1776-1807, March.
    4. Xiao-Yue Gong & Vineet Goyal & Garud N. Iyengar & David Simchi-Levi & Rajan Udwani & Shuangyu Wang, 2022. "Online Assortment Optimization with Reusable Resources," Management Science, INFORMS, vol. 68(7), pages 4772-4785, July.
    5. Hao Wang & Zhenzhen Yan & Xiaohui Bei, 2022. "A nonasymptotic analysis for re‐solving heuristic in online matching," Production and Operations Management, Production and Operations Management Society, vol. 31(8), pages 3096-3124, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Negin Golrezaei & Hamid Nazerzadeh & Paat Rusmevichientong, 2014. "Real-Time Optimization of Personalized Assortments," Management Science, INFORMS, vol. 60(6), pages 1532-1551, June.
    2. Qi (George) Chen & Stefanus Jasin & Izak Duenyas, 2016. "Real-Time Dynamic Pricing with Minimal and Flexible Price Adjustment," Management Science, INFORMS, vol. 62(8), pages 2437-2455, August.
    3. Alberto Vera & Siddhartha Banerjee, 2021. "The Bayesian Prophet: A Low-Regret Framework for Online Decision Making," Management Science, INFORMS, vol. 67(3), pages 1368-1391, March.
    4. Yuhang Ma & Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "An Approximation Algorithm for Network Revenue Management Under Nonstationary Arrivals," Operations Research, INFORMS, vol. 68(3), pages 834-855, May.
    5. Xingxing Chen & Jacob Feldman & Seung Hwan Jung & Panos Kouvelis, 2022. "Approximation schemes for the joint inventory selection and online resource allocation problem," Production and Operations Management, Production and Operations Management Society, vol. 31(8), pages 3143-3159, August.
    6. Dirk Sierag & Rob Mei, 2016. "Single-leg choice-based revenue management: a robust optimisation approach," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 15(6), pages 454-467, December.
    7. Xiao-Yue Gong & Vineet Goyal & Garud N. Iyengar & David Simchi-Levi & Rajan Udwani & Shuangyu Wang, 2022. "Online Assortment Optimization with Reusable Resources," Management Science, INFORMS, vol. 68(7), pages 4772-4785, July.
    8. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    9. Stefanus Jasin & Amitabh Sinha, 2015. "An LP-Based Correlated Rounding Scheme for Multi-Item Ecommerce Order Fulfillment," Operations Research, INFORMS, vol. 63(6), pages 1336-1351, December.
    10. Stefanus Jasin, 2014. "Reoptimization and Self-Adjusting Price Control for Network Revenue Management," Operations Research, INFORMS, vol. 62(5), pages 1168-1178, October.
    11. Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "Dynamic Assortment Optimization for Reusable Products with Random Usage Durations," Management Science, INFORMS, vol. 66(7), pages 2820-2844, July.
    12. Nan Liu & Peter M. van de Ven & Bo Zhang, 2019. "Managing Appointment Booking Under Customer Choices," Management Science, INFORMS, vol. 65(9), pages 4280-4298, September.
    13. Ali Aouad & Daniela Saban, 2023. "Online Assortment Optimization for Two-Sided Matching Platforms," Management Science, INFORMS, vol. 69(4), pages 2069-2087, April.
    14. Qi Feng & Chengzhang Li & Mengshi Lu & Jeyaveerasingam George Shanthikumar, 2022. "Dynamic Substitution for Selling Multiple Products under Supply and Demand Uncertainties," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1645-1662, April.
    15. Huanan Zhang & Cong Shi & Chao Qin & Cheng Hua, 2016. "Stochastic regret minimization for revenue management problems with nonstationary demands," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(6), pages 433-448, September.
    16. Will Ma & David Simchi-Levi & Chung-Piaw Teo, 2021. "On Policies for Single-Leg Revenue Management with Limited Demand Information," Operations Research, INFORMS, vol. 69(1), pages 207-226, January.
    17. Nurşen Aydın & Ş. İlker Birbil & J. B. G. Frenk & Nilay Noyan, 2013. "Single-Leg Airline Revenue Management with Overbooking," Transportation Science, INFORMS, vol. 47(4), pages 560-583, November.
    18. Pornpawee Bumpensanti & He Wang, 2020. "A Re-Solving Heuristic with Uniformly Bounded Loss for Network Revenue Management," Management Science, INFORMS, vol. 66(7), pages 2993-3009, July.
    19. Andre P. Calmon & Florin D. Ciocan & Gonzalo Romero, 2021. "Revenue Management with Repeated Customer Interactions," Management Science, INFORMS, vol. 67(5), pages 2944-2963, May.
    20. Guillermo Gallego & Richard Ratliff & Sergey Shebalov, 2015. "A General Attraction Model and Sales-Based Linear Program for Network Revenue Management Under Customer Choice," Operations Research, INFORMS, vol. 63(1), pages 212-232, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:68:y:2020:i:6:p:1787-1803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.