IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v313y2024i2p418-434.html
   My bibliography  Save this article

An effective hybrid evolutionary algorithm for the clustered orienteering problem

Author

Listed:
  • Wu, Qinghua
  • He, Mu
  • Hao, Jin-Kao
  • Lu, Yongliang

Abstract

In this paper, we study a variant of the orienteering problem called the clustered orienteering problem. In this problem, customers are grouped into clusters. A profit is associated with each cluster and is collected if and only if all customers in the cluster are served. A single vehicle is available to visit the customers. The goal is to maximize the total profits collected within a maximum travel time limit. To address this NP-hard problem, we propose the first evolutionary algorithm that integrates a backbone-based crossover operator and a destroy-and-repair mutation operator for search diversification and a solution-based tabu search procedure reinforced by a reinforcement learning mechanism for search intensification. The experiment results indicate that our algorithm outperforms the state-of-the-art algorithms from the literature on a wide range of 924 well-known benchmark instances. In particular, the proposed algorithm obtains new records (new lower bounds) for 14 instances and finds the best-known solutions for the remaining instances. Furthermore, a new set of 72 large instances with 50 to 100 clusters and at least 400 vertices is generated to evaluate the scalability of the proposed algorithm. Results show that the proposed algorithm manages to outperform three state-of-the-art COP algorithms. We also adopt our algorithm to solve a dynamic version of the COP considering stochastic travel time.

Suggested Citation

  • Wu, Qinghua & He, Mu & Hao, Jin-Kao & Lu, Yongliang, 2024. "An effective hybrid evolutionary algorithm for the clustered orienteering problem," European Journal of Operational Research, Elsevier, vol. 313(2), pages 418-434.
  • Handle: RePEc:eee:ejores:v:313:y:2024:i:2:p:418-434
    DOI: 10.1016/j.ejor.2023.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723006100
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Archetti, Claudia & Carrabs, Francesco & Cerulli, Raffaele, 2018. "The Set Orienteering Problem," European Journal of Operational Research, Elsevier, vol. 267(1), pages 264-272.
    2. Divsalar, A. & Vansteenwegen, P. & Sörensen, K. & Cattrysse, D., 2014. "A memetic algorithm for the orienteering problem with hotel selection," European Journal of Operational Research, Elsevier, vol. 237(1), pages 29-49.
    3. Lipowski, Adam & Lipowska, Dorota, 2012. "Roulette-wheel selection via stochastic acceptance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(6), pages 2193-2196.
    4. Chao, I-Ming & Golden, Bruce L. & Wasil, Edward A., 1996. "A fast and effective heuristic for the orienteering problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 475-489, February.
    5. Enrico Zio, 2013. "Monte Carlo Simulation: The Method," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 19-58, Springer.
    6. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    7. Carrabs, Francesco, 2021. "A biased random-key genetic algorithm for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 292(3), pages 830-854.
    8. Angelelli, E. & Archetti, C. & Vindigni, M., 2014. "The Clustered Orienteering Problem," European Journal of Operational Research, Elsevier, vol. 238(2), pages 404-414.
    9. Irawan, Chandra Ade & Eskandarpour, Majid & Ouelhadj, Djamila & Jones, Dylan, 2021. "Simulation-based optimisation for stochastic maintenance routing in an offshore wind farm," European Journal of Operational Research, Elsevier, vol. 289(3), pages 912-926.
    10. Bruce L. Golden & Larry Levy & Rakesh Vohra, 1987. "The orienteering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(3), pages 307-318, June.
    11. Hanafi, Saïd & Mansini, Renata & Zanotti, Roberto, 2020. "The multi-visit team orienteering problem with precedence constraints," European Journal of Operational Research, Elsevier, vol. 282(2), pages 515-529.
    12. Yu, Qinxiao & Fang, Kan & Zhu, Ning & Ma, Shoufeng, 2019. "A matheuristic approach to the orienteering problem with service time dependent profits," European Journal of Operational Research, Elsevier, vol. 273(2), pages 488-503.
    13. Dolinskaya, Irina & Shi, Zhenyu (Edwin) & Smilowitz, Karen, 2018. "Adaptive orienteering problem with stochastic travel times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 1-19.
    14. Bijun Wang & Zheyong Bian & Mo Mansouri, 2023. "Self-adaptive heuristic algorithms for the dynamic and stochastic orienteering problem in autonomous transportation system," Journal of Heuristics, Springer, vol. 29(1), pages 77-137, February.
    15. Zhou, Qing & Hao, Jin-Kao & Wu, Qinghua, 2022. "A hybrid evolutionary search for the generalized quadratic multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 296(3), pages 788-803.
    16. Dontas, Michael & Sideris, Georgios & Manousakis, Eleftherios G. & Zachariadis, Emmanouil E., 2023. "An adaptive memory matheuristic for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1010-1023.
    17. Ann Campbell & Michel Gendreau & Barrett Thomas, 2011. "The orienteering problem with stochastic travel and service times," Annals of Operations Research, Springer, vol. 186(1), pages 61-81, June.
    18. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    19. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    20. Matteo Fischetti & Juan José Salazar González & Paolo Toth, 1997. "A Branch-and-Cut Algorithm for the Symmetric Generalized Traveling Salesman Problem," Operations Research, INFORMS, vol. 45(3), pages 378-394, June.
    21. Chao, I-Ming & Golden, Bruce L. & Wasil, Edward A., 1996. "The team orienteering problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 464-474, February.
    22. Maria Battarra & Güneş Erdoğan & Daniele Vigo, 2014. "Exact Algorithms for the Clustered Vehicle Routing Problem," Operations Research, INFORMS, vol. 62(1), pages 58-71, February.
    23. Sohrabi, Somayeh & Ziarati, Koorush & Keshtkaran, Morteza, 2020. "A Greedy Randomized Adaptive Search Procedure for the Orienteering Problem with Hotel Selection," European Journal of Operational Research, Elsevier, vol. 283(2), pages 426-440.
    24. Pěnička, Robert & Faigl, Jan & Saska, Martin, 2019. "Variable Neighborhood Search for the Set Orienteering Problem and its application to other Orienteering Problem variants," European Journal of Operational Research, Elsevier, vol. 276(3), pages 816-825.
    25. Wang, Yang & Wu, Qinghua & Glover, Fred, 2017. "Effective metaheuristic algorithms for the minimum differential dispersion problem," European Journal of Operational Research, Elsevier, vol. 258(3), pages 829-843.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Mu & Wu, Qinghua & Benlic, Una & Lu, Yongliang & Chen, Yuning, 2024. "An effective multi-level memetic search with neighborhood reduction for the clustered team orienteering problem," European Journal of Operational Research, Elsevier, vol. 318(3), pages 778-801.
    2. Roberto Montemanni & Derek H. Smith, 2024. "A Compact Model for the Clustered Orienteering Problem," Logistics, MDPI, vol. 8(2), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Mu & Wu, Qinghua & Benlic, Una & Lu, Yongliang & Chen, Yuning, 2024. "An effective multi-level memetic search with neighborhood reduction for the clustered team orienteering problem," European Journal of Operational Research, Elsevier, vol. 318(3), pages 778-801.
    2. Shih-Wei Lin & Sirui Guo & Wen-Jie Wu, 2024. "Applying the Simulated Annealing Algorithm to the Set Orienteering Problem with Mandatory Visits," Mathematics, MDPI, vol. 12(19), pages 1-24, October.
    3. Dontas, Michael & Sideris, Georgios & Manousakis, Eleftherios G. & Zachariadis, Emmanouil E., 2023. "An adaptive memory matheuristic for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1010-1023.
    4. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    5. Álvarez-Miranda, Eduardo & Luipersbeck, Martin & Sinnl, Markus, 2018. "Gotta (efficiently) catch them all: Pokémon GO meets Orienteering Problems," European Journal of Operational Research, Elsevier, vol. 265(2), pages 779-794.
    6. Ruiz-Meza, José & Montoya-Torres, Jairo R., 2022. "A systematic literature review for the tourist trip design problem: Extensions, solution techniques and future research lines," Operations Research Perspectives, Elsevier, vol. 9(C).
    7. Shiri, Davood & Akbari, Vahid & Hassanzadeh, Ali, 2024. "The Capacitated Team Orienteering Problem: An online optimization framework with predictions of unknown accuracy," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    8. Archetti, C. & Carrabs, F. & Cerulli, R. & Laureana, F., 2024. "A new formulation and a branch-and-cut algorithm for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 314(2), pages 446-465.
    9. Carrabs, Francesco, 2021. "A biased random-key genetic algorithm for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 292(3), pages 830-854.
    10. Bian, Zheyong & Liu, Xiang, 2018. "A real-time adjustment strategy for the operational level stochastic orienteering problem: A simulation-aided optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 246-266.
    11. Pěnička, Robert & Faigl, Jan & Saska, Martin, 2019. "Variable Neighborhood Search for the Set Orienteering Problem and its application to other Orienteering Problem variants," European Journal of Operational Research, Elsevier, vol. 276(3), pages 816-825.
    12. Balcik, Burcu, 2017. "Site selection and vehicle routing for post-disaster rapid needs assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 30-58.
    13. Qinxiao Yu & Yossiri Adulyasak & Louis-Martin Rousseau & Ning Zhu & Shoufeng Ma, 2022. "Team Orienteering with Time-Varying Profit," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 262-280, January.
    14. Zhao, Yanlu & Alfandari, Laurent, 2020. "Design of diversified package tours for the digital travel industry : A branch-cut-and-price approach," European Journal of Operational Research, Elsevier, vol. 285(3), pages 825-843.
    15. Katharina Glock & Anne Meyer, 2020. "Mission Planning for Emergency Rapid Mapping with Drones," Transportation Science, INFORMS, vol. 54(2), pages 534-560, March.
    16. Yu, Qinxiao & Fang, Kan & Zhu, Ning & Ma, Shoufeng, 2019. "A matheuristic approach to the orienteering problem with service time dependent profits," European Journal of Operational Research, Elsevier, vol. 273(2), pages 488-503.
    17. Miranda, Pablo A. & Blazquez, Carola A. & Obreque, Carlos & Maturana-Ross, Javier & Gutierrez-Jarpa, Gabriel, 2018. "The bi-objective insular traveling salesman problem with maritime and ground transportation costs," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1014-1036.
    18. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.
    19. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    20. Wolfgang Wörndl & Alexander Hefele & Daniel Herzog, 2017. "Recommending a sequence of interesting places for tourist trips," Information Technology & Tourism, Springer, vol. 17(1), pages 31-54, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:313:y:2024:i:2:p:418-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.