IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v319y2024i1p135-152.html
   My bibliography  Save this article

A learning-based granular variable neighborhood search for a multi-period election logistics problem with time-dependent profits

Author

Listed:
  • Shahmanzari, Masoud
  • Mansini, Renata

Abstract

Planning the election campaign for leaders of a political party is a complex problem. The party representatives, running mates, and campaign managers have to design an efficient routing and scheduling plan to visit multiple locations while respecting time and budget constraints. Given the limited time of election campaigns in most countries, every minute should be used effectively, and there is very little room for error. In this paper, we formalize this problem as the multiple Roaming Salesman Problem (mRSP), a new variant of the recently introduced Roaming Salesman Problem (RSP), where a predefined number of political representatives visit a set of cities during a planning horizon to maximize collected rewards, subject to budget and time constraints. Cities can be visited more than once and associated rewards are time-dependent (increasing over time) according to the day of the visit and the recency of previous visits. We develop a compact Mixed Integer Linear Programming (MILP) formulation complemented with effective valid inequalities. Since commercial solvers can obtain optimal solutions only for small-sized instances, we develop a Learning-based Granular Variable Neighborhood Search and demonstrate its capability of providing high-quality solutions in short CPU times on real-world instances. The adaptive nature of our algorithm refers to its ability to dynamically adjust the neighborhood structure based on the progress of the search. Our algorithm generates the best-known results for many instances.

Suggested Citation

  • Shahmanzari, Masoud & Mansini, Renata, 2024. "A learning-based granular variable neighborhood search for a multi-period election logistics problem with time-dependent profits," European Journal of Operational Research, Elsevier, vol. 319(1), pages 135-152.
  • Handle: RePEc:eee:ejores:v:319:y:2024:i:1:p:135-152
    DOI: 10.1016/j.ejor.2024.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724004545
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.
    2. Ahmed, Leena & Mumford, Christine & Kheiri, Ahmed, 2019. "Solving urban transit route design problem using selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 274(2), pages 545-559.
    3. Cinar, Ahmet & Salman, F. Sibel & Bozkaya, Burcin, 2021. "Prioritized single nurse routing and scheduling for home healthcare services," European Journal of Operational Research, Elsevier, vol. 289(3), pages 867-878.
    4. Sze, Jeeu Fong & Salhi, Said & Wassan, Niaz, 2017. "The cumulative capacitated vehicle routing problem with min-sum and min-max objectives: An effective hybridisation of adaptive variable neighbourhood search and large neighbourhood search," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 162-184.
    5. Javier Panadero & Angel A. Juan & Christopher Bayliss & Christine Currie, 2020. "Maximising reward from a team of surveillance drones: a simheuristic approach to the stochastic team orienteering problem," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 14(4), pages 485-516.
    6. Masoud Shahmanzari & Deniz Aksen & Saïd Salhi, 2022. "Multi-period travelling politician problem: A hybrid metaheuristic solution method," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(6), pages 1325-1346, June.
    7. Lodge, Milton & Steenbergen, Marco R. & Brau, Shawn, 1995. "The Responsive Voter: Campaign Information and the Dynamics of Candidate Evaluation," American Political Science Review, Cambridge University Press, vol. 89(2), pages 309-326, June.
    8. Wouter Souffriau & Pieter Vansteenwegen & Greet Vanden Berghe & Dirk Van Oudheusden, 2013. "The Multiconstraint Team Orienteering Problem with Multiple Time Windows," Transportation Science, INFORMS, vol. 47(1), pages 53-63, February.
    9. Faugère, Louis & Klibi, Walid & White, Chelsea & Montreuil, Benoit, 2022. "Dynamic pooled capacity deployment for urban parcel logistics," European Journal of Operational Research, Elsevier, vol. 303(2), pages 650-667.
    10. Hanafi, Saïd & Mansini, Renata & Zanotti, Roberto, 2020. "The multi-visit team orienteering problem with precedence constraints," European Journal of Operational Research, Elsevier, vol. 282(2), pages 515-529.
    11. Tarantilis, C.D. & Stavropoulou, F. & Repoussis, P.P., 2013. "The Capacitated Team Orienteering Problem: A Bi-level Filter-and-Fan method," European Journal of Operational Research, Elsevier, vol. 224(1), pages 65-78.
    12. Pieter Vansteenwegen & Wouter Souffriau & Greet Vanden Berghe & Dirk Van Oudheusden, 2009. "Metaheuristics for Tourist Trip Planning," Lecture Notes in Economics and Mathematical Systems, in: Kenneth Sörensen & Marc Sevaux & Walter Habenicht & Martin Josef Geiger (ed.), Metaheuristics in the Service Industry, chapter 2, pages 15-31, Springer.
    13. Kotiloglu, S. & Lappas, T. & Pelechrinis, K. & Repoussis, P.P., 2017. "Personalized multi-period tour recommendations," Tourism Management, Elsevier, vol. 62(C), pages 76-88.
    14. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    15. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    16. Shahmanzari, Masoud & Aksen, Deniz & Salhi, Saïd, 2020. "Formulation and a two-phase matheuristic for the roaming salesman problem: Application to election logistics," European Journal of Operational Research, Elsevier, vol. 280(2), pages 656-670.
    17. Riera-Ledesma, Jorge & Salazar-González, Juan José, 2017. "Solving the Team Orienteering Arc Routing Problem with a column generation approach," European Journal of Operational Research, Elsevier, vol. 262(1), pages 14-27.
    18. Verbeeck, C. & Sörensen, K. & Aghezzaf, E.-H. & Vansteenwegen, P., 2014. "A fast solution method for the time-dependent orienteering problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 419-432.
    19. Labadie, Nacima & Mansini, Renata & Melechovský, Jan & Wolfler Calvo, Roberto, 2012. "The Team Orienteering Problem with Time Windows: An LP-based Granular Variable Neighborhood Search," European Journal of Operational Research, Elsevier, vol. 220(1), pages 15-27.
    20. Drake, John H. & Kheiri, Ahmed & Özcan, Ender & Burke, Edmund K., 2020. "Recent advances in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 285(2), pages 405-428.
    21. Saltzman, Robert M. & Bradford, Richard M., 2022. "A data-driven approach to scheduling the U.S. presidential primary elections," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    2. Zhao, Yanlu & Alfandari, Laurent, 2020. "Design of diversified package tours for the digital travel industry : A branch-cut-and-price approach," European Journal of Operational Research, Elsevier, vol. 285(3), pages 825-843.
    3. Ernesto Tarantino & Ivanoe De Falco & Umberto Scafuri, 2019. "A mobile personalized tourist guide and its user evaluation," Information Technology & Tourism, Springer, vol. 21(3), pages 413-455, September.
    4. Shiri, Davood & Akbari, Vahid & Hassanzadeh, Ali, 2024. "The Capacitated Team Orienteering Problem: An online optimization framework with predictions of unknown accuracy," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    5. Stavropoulou, F. & Repoussis, P.P. & Tarantilis, C.D., 2019. "The Vehicle Routing Problem with Profits and consistency constraints," European Journal of Operational Research, Elsevier, vol. 274(1), pages 340-356.
    6. Bian, Zheyong & Liu, Xiang, 2018. "A real-time adjustment strategy for the operational level stochastic orienteering problem: A simulation-aided optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 246-266.
    7. Ruiz-Meza, José & Montoya-Torres, Jairo R., 2022. "A systematic literature review for the tourist trip design problem: Extensions, solution techniques and future research lines," Operations Research Perspectives, Elsevier, vol. 9(C).
    8. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2018. "The time-dependent pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 1-24.
    9. Kobeaga, Gorka & Rojas-Delgado, Jairo & Merino, María & Lozano, Jose A., 2024. "A revisited branch-and-cut algorithm for large-scale orienteering problems," European Journal of Operational Research, Elsevier, vol. 313(1), pages 44-68.
    10. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    11. Antonio R. Uguina & Juan F. Gomez & Javier Panadero & Anna Martínez-Gavara & Angel A. Juan, 2024. "A Learnheuristic Algorithm Based on Thompson Sampling for the Heterogeneous and Dynamic Team Orienteering Problem," Mathematics, MDPI, vol. 12(11), pages 1-19, June.
    12. Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.
    13. Kotiloglu, S. & Lappas, T. & Pelechrinis, K. & Repoussis, P.P., 2017. "Personalized multi-period tour recommendations," Tourism Management, Elsevier, vol. 62(C), pages 76-88.
    14. Sun, Peng & Veelenturf, Lucas P. & Dabia, Said & Van Woensel, Tom, 2018. "The time-dependent capacitated profitable tour problem with time windows and precedence constraints," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1058-1073.
    15. Asma Ben-Said & Racha El-Hajj & Aziz Moukrim, 2019. "A variable space search heuristic for the Capacitated Team Orienteering Problem," Journal of Heuristics, Springer, vol. 25(2), pages 273-303, April.
    16. Orlis, Christos & Laganá, Demetrio & Dullaert, Wout & Vigo, Daniele, 2020. "Distribution with Quality of Service Considerations: The Capacitated Routing Problem with Profits and Service Level Requirements," Omega, Elsevier, vol. 93(C).
    17. Rahma Lahyani & Mahdi Khemakhem & Frédéric Semet, 2017. "A unified matheuristic for solving multi-constrained traveling salesman problems with profits," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 393-422, September.
    18. Mei, Yi & Salim, Flora D. & Li, Xiaodong, 2016. "Efficient meta-heuristics for the Multi-Objective Time-Dependent Orienteering Problem," European Journal of Operational Research, Elsevier, vol. 254(2), pages 443-457.
    19. Li, Jiaojiao & Zhu, Jianghan & Peng, Guansheng & Wang, Jianjiang & Zhen, Lu & Demeulemeester, Erik, 2024. "Branch-Price-and-Cut algorithms for the team orienteering problem with interval-varying profits," European Journal of Operational Research, Elsevier, vol. 319(3), pages 793-807.
    20. José Ruiz-Meza & Jairo R. Montoya-Torres, 2021. "Tourist trip design with heterogeneous preferences, transport mode selection and environmental considerations," Annals of Operations Research, Springer, vol. 305(1), pages 227-249, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:319:y:2024:i:1:p:135-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.