IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v172y2023icp93-116.html
   My bibliography  Save this article

Simple abstract models to study stability of urban networks with decentralized signal control

Author

Listed:
  • Gupta, Namrata
  • Patil, Gopal R.
  • Vu, Hai L.

Abstract

Traffic Signal Controllers (TSCs) used to manage intersections can influence the residual queues at intersections. These residual queues can lead to an irreversible state of network gridlock. This paper discovers the advantages of locally adaptive TSCs utilizing traffic information on both upstream and downstream approaches of an intersection (e.g., back-pressure or BP control) over employing only upstream approaches information (e.g., proportional control) in avoiding gridlock. Although BP algorithms are mathematically proven to be throughput optimal as they bound network queues for all feasible demands, the proofs exist only for networks with infinite link capacities, fixed-route choices, or for TSCs with no minimum green-time requirement.

Suggested Citation

  • Gupta, Namrata & Patil, Gopal R. & Vu, Hai L., 2023. "Simple abstract models to study stability of urban networks with decentralized signal control," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 93-116.
  • Handle: RePEc:eee:transb:v:172:y:2023:i:c:p:93-116
    DOI: 10.1016/j.trb.2023.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261523000577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.03.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geroliminis, Nikolas, 2015. "Cruising-for-parking in congested cities with an MFD representation," Economics of Transportation, Elsevier, vol. 4(3), pages 156-165.
    2. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    3. Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
    4. Daganzo, Carlos F. & Gayah, Vikash V. & Gonzales, Eric J., 2011. "Macroscopic relations of urban traffic variables: Bifurcations, multivaluedness and instability," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 278-288, January.
    5. Gu, Ziyuan & Safarighouzhdi, Farshid & Saberi, Meead & Rashidi, Taha H., 2021. "A macro-micro approach to modeling parking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 220-244.
    6. Haddad, Jack & Ramezani, Mohsen & Geroliminis, Nikolas, 2013. "Cooperative traffic control of a mixed network with two urban regions and a freeway," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 17-36.
    7. Zheng, Nan & Waraich, Rashid A. & Axhausen, Kay W. & Geroliminis, Nikolas, 2012. "A dynamic cordon pricing scheme combining the Macroscopic Fundamental Diagram and an agent-based traffic model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1291-1303.
    8. Mohajerpoor, Reza & Saberi, Meead & Ramezani, Mohsen, 2019. "Analytical derivation of the optimal traffic signal timing: Minimizing delay variability and spillback probability for undersaturated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 45-68.
    9. Zhang, Zhao & Parr, Scott A. & Jiang, Hai & Wolshon, Brian, 2015. "Optimization model for regional evacuation transportation system using macroscopic productivity function," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 616-630.
    10. Yildirimoglu, Mehmet & Geroliminis, Nikolas, 2014. "Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 186-200.
    11. Lele Zhang & Zhongqi Yuan & Li Yang & Zhiyuan Liu, 2020. "Recent developments in traffic flow modelling using macroscopic fundamental diagram," Transport Reviews, Taylor & Francis Journals, vol. 40(6), pages 689-710, November.
    12. Gayah, Vikash V. & Gao, Xueyu (Shirley) & Nagle, Andrew S., 2014. "On the impacts of locally adaptive signal control on urban network stability and the Macroscopic Fundamental Diagram," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 255-268.
    13. Zhang, Lele & Garoni, Timothy M & de Gier, Jan, 2013. "A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 1-23.
    14. Wu, Chao-Yun & Hu, Mao-Bin & Jiang, Rui & Hao, Qing-Yi, 2021. "Effects of road network structure on the performance of urban traffic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    15. Li, Ye & Mohajerpoor, Reza & Ramezani, Mohsen, 2021. "Perimeter control with real-time location-varying cordon," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 101-120.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, R.X. & Huang, Y.P. & Chen, C. & Lam, W.H.K. & Xu, D.B. & Sumalee, A., 2018. "Boundary conditions and behavior of the macroscopic fundamental diagram based network traffic dynamics: A control systems perspective," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 327-355.
    2. Gao, Xueyu (Shirley) & Gayah, Vikash V., 2018. "An analytical framework to model uncertainty in urban network dynamics using Macroscopic Fundamental Diagrams," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 660-675.
    3. Laval, Jorge A. & Castrillón, Felipe, 2015. "Stochastic approximations for the macroscopic fundamental diagram of urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 904-916.
    4. Gayah, Vikash V. & Gao, Xueyu (Shirley) & Nagle, Andrew S., 2014. "On the impacts of locally adaptive signal control on urban network stability and the Macroscopic Fundamental Diagram," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 255-268.
    5. Haddad, Jack & Zheng, Zhengfei, 2020. "Adaptive perimeter control for multi-region accumulation-based models with state delays," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 133-153.
    6. Su, Z.C. & Chow, Andy H.F. & Fang, C.L. & Liang, E.M. & Zhong, R.X., 2023. "Hierarchical control for stochastic network traffic with reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 196-216.
    7. Zhong, R.X. & Chen, C. & Huang, Y.P. & Sumalee, A. & Lam, W.H.K. & Xu, D.B., 2018. "Robust perimeter control for two urban regions with macroscopic fundamental diagrams: A control-Lyapunov function approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 687-707.
    8. Ampountolas, Konstantinos & Zheng, Nan & Geroliminis, Nikolas, 2017. "Macroscopic modelling and robust control of bi-modal multi-region urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 616-637.
    9. Niu, Xiao-Jing & Zhao, Xiao-Mei & Xie, Dong-Fan & Liu, Feng & Bi, Jun & Lu, Chaoru, 2022. "Impact of large-scale activities on macroscopic fundamental diagram: Field data analysis and modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 241-268.
    10. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2020. "Macroscopic fundamental diagram based perimeter control considering dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 87-109.
    11. Liu, Wei & Szeto, Wai Yuen, 2020. "Learning and managing stochastic network traffic dynamics with an aggregate traffic representation," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 19-46.
    12. Ramezani, Mohsen & Haddad, Jack & Geroliminis, Nikolas, 2015. "Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 1-19.
    13. Zheng, Nan & Geroliminis, Nikolas, 2016. "Modeling and optimization of multimodal urban networks with limited parking and dynamic pricing," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 36-58.
    14. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    15. Wu, Chao-Yun & Li, Ming & Jiang, Rui & Hao, Qing-Yi & Hu, Mao-Bin, 2018. "Perimeter control for urban traffic system based on macroscopic fundamental diagram," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 231-242.
    16. Xu, Guanhao & Gayah, Vikash V., 2023. "Non-unimodal and non-concave relationships in the network Macroscopic Fundamental Diagram caused by hierarchical streets," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 203-227.
    17. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.
    18. Kouvelas, Anastasios & Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Enhancing model-based feedback perimeter control with data-driven online adaptive optimization," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 26-45.
    19. Kai Wang & David M Levinson, 2016. "Towards a Metropolitan Fundamental Diagram Using Travel Survey Data," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-18, February.
    20. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:172:y:2023:i:c:p:93-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.