IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v168y2023icp56-80.html
   My bibliography  Save this article

The continuous signalized (COS) node model for dynamic traffic assignment

Author

Listed:
  • Yahyamozdarani, Raheleh
  • Tampère, Chris M.J.

Abstract

In macroscopic dynamic network loading, the role of the node model is to determine transfer volumes between each in- and outgoing link, while respecting in a consistent way all forward and backward-moving traffic waves (or boundary conditions) and desired turning fractions. In addition, capacity constraints on the node itself need to be respected; they result from priority rules on conflict points, or from traffic signal control. The most common way in literature to implement signalized node models is to track second by second which turns have green or are blocked by red. This imposes a fine – and thus computationally demanding – time discretization step in the numerical solution algorithm of the entire dynamic network loading, often unnecessary or even undesired for the DNL application. As an alternative, this paper proposes a continuous approach that finds the average turn (or transfer) volume over a full cycle under the prevailing link boundary conditions and traffic signal timing. This average ‘continuous’ volume can then be applied to any (fine or coarse) time discretization. To this end, it discusses in depth and proposes mathematical formulations for all boundary and consistency requirements that a traffic signal imposes, and the intricate interactions between stage timing and arrival patterns of vehicles and outflow opportunities (gaps). This COntinuous Signalized or COS node model and its iterative solution algorithm combine all these boundaries and interactions in a theoretically consistent way. In a case study, we show that COS is the only existing, theoretically consistent continuous signalized node model, as alternative models sometimes fail to produce holding-free solutions, and/or violate boundary conditions imposed by the connecting links (especially in more complicated combinations of boundary conditions involving congestion spillback).

Suggested Citation

  • Yahyamozdarani, Raheleh & Tampère, Chris M.J., 2023. "The continuous signalized (COS) node model for dynamic traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 56-80.
  • Handle: RePEc:eee:transb:v:168:y:2023:i:c:p:56-80
    DOI: 10.1016/j.trb.2022.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261522002053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2022.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smith, Mike & Huang, Wei & Viti, Francesco & Tampère, Chris M.J. & Lo, Hong K., 2019. "Quasi-dynamic traffic assignment with spatial queueing, control and blocking back," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 140-166.
    2. Han, Ke & Gayah, Vikash V., 2015. "Continuum signalized junction model for dynamic traffic networks: Offset, spillback, and multiple signal phases," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 213-239.
    3. Jabari, Saif Eddin, 2016. "Node modeling for congested urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 229-249.
    4. Himpe, Willem & Corthout, Ruben & Tampère, M.J. Chris, 2016. "An efficient iterative link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 170-190.
    5. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    6. Tampère, Chris M.J. & Corthout, Ruben & Cattrysse, Dirk & Immers, Lambertus H., 2011. "A generic class of first order node models for dynamic macroscopic simulation of traffic flows," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 289-309, January.
    7. Mike J. Smith, 2010. "Intelligent Network Control: Using an Assignment–Control Model to Design Fixed Time Signal Timings," Chapters, in: Chris M.J. Tampere & Francesco Viti & Lambertus H. (Ben) Immers (ed.), New Developments in Transport Planning, chapter 3, Edward Elgar Publishing.
    8. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2007. "Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1114-1138, December.
    9. Han, Ke & Gayah, Vikash V. & Piccoli, Benedetto & Friesz, Terry L. & Yao, Tao, 2014. "On the continuum approximation of the on-and-off signal control on dynamic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 73-97.
    10. Corthout, Ruben & Flötteröd, Gunnar & Viti, Francesco & Tampère, Chris M.J., 2012. "Non-unique flows in macroscopic first-order intersection models," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 343-359.
    11. Ansorge, Rainer, 1990. "What does the entropy condition mean in traffic flow theory?," Transportation Research Part B: Methodological, Elsevier, vol. 24(2), pages 133-143, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    2. Wright, Matthew A. & Gomes, Gabriel & Horowitz, Roberto & Kurzhanskiy, Alex A., 2017. "On node models for high-dimensional road networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 212-234.
    3. Jin, Wen-Long, 2017. "A Riemann solver for a system of hyperbolic conservation laws at a general road junction," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 21-41.
    4. Himpe, Willem & Corthout, Ruben & Tampère, M.J. Chris, 2016. "An efficient iterative link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 170-190.
    5. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    6. Flötteröd, Gunnar & Rohde, Jannis, 2011. "Operational macroscopic modeling of complex urban road intersections," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 903-922, July.
    7. Jabari, Saif Eddin, 2016. "Node modeling for congested urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 229-249.
    8. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2023. "General solution scheme for the static link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 108-135.
    9. Smith, Michael J & Viti, Francesco & Huang, Wei & Mounce, Richard, 2023. "With spatial queueing, the P0 responsive traffic signal control policy may fail to maximise network capacity even if queue storage capacities are very large," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    10. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2019. "Continuous-time general link transmission model with simplified fanning, Part I: Theory and link model formulation," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 442-470.
    11. Li, Pengfei & Mirchandani, Pitu & Zhou, Xuesong, 2015. "Solving simultaneous route guidance and traffic signal optimization problem using space-phase-time hypernetwork," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 103-130.
    12. Yu, Hao & Ma, Rui & Zhang, H. Michael, 2018. "Optimal traffic signal control under dynamic user equilibrium and link constraints in a general network," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 302-325.
    13. Mohebifard, Rasool & Hajbabaie, Ali, 2019. "Optimal network-level traffic signal control: A benders decomposition-based solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 252-274.
    14. Wang, Guanfeng & Jia, Hongfei & Feng, Tao & Tian, Jingjing & Wu, Ruiyi & Gao, Heyao & Liu, Chao, 2024. "Modelling the dual dynamic traffic flow evolution with information perception differences between human-driven vehicles and connected autonomous vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    15. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    16. Bliemer, Michiel C.J. & Raadsen, Mark P.H. & Smits, Erik-Sander & Zhou, Bojian & Bell, Michael G.H., 2014. "Quasi-dynamic traffic assignment with residual point queues incorporating a first order node model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 363-384.
    17. Han, Ke & Piccoli, Benedetto & Friesz, Terry L., 2016. "Continuity of the path delay operator for dynamic network loading with spillback," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 211-233.
    18. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.
    19. Carolina Osorio & Gunnar Flötteröd, 2015. "Capturing Dependency Among Link Boundaries in a Stochastic Dynamic Network Loading Model," Transportation Science, INFORMS, vol. 49(2), pages 420-431, May.
    20. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:168:y:2023:i:c:p:56-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.