IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.17021.html
   My bibliography  Save this paper

Competitive Facility Location with Market Expansion and Customer-centric Objective

Author

Listed:
  • Cuong Le
  • Tien Mai
  • Ngan Ha Duong
  • Minh Hoang Ha

Abstract

We study a competitive facility location problem, where customer behavior is modeled and predicted using a discrete choice random utility model. The goal is to strategically place new facilities to maximize the overall captured customer demand in a competitive marketplace. In this work, we introduce two novel considerations. First, the total customer demand in the market is not fixed but is modeled as an increasing function of the customers' total utilities. Second, we incorporate a new term into the objective function, aiming to balance the firm's benefits and customer satisfaction. Our new formulation exhibits a highly nonlinear structure and is not directly solved by existing approaches. To address this, we first demonstrate that, under a concave market expansion function, the objective function is concave and submodular, allowing for a $(1-1/e)$ approximation solution by a simple polynomial-time greedy algorithm. We then develop a new method, called Inner-approximation, which enables us to approximate the mixed-integer nonlinear problem (MINLP), with arbitrary precision, by an MILP without introducing additional integer variables. We further demonstrate that our inner-approximation method consistently yields lower approximations than the outer-approximation methods typically used in the literature. Moreover, we extend our settings by considering a\textit{ general (non-concave)} market-expansion function and show that the Inner-approximation mechanism enables us to approximate the resulting MINLP, with arbitrary precision, by an MILP. To further enhance this MILP, we show how to significantly reduce the number of additional binary variables by leveraging concave areas of the objective function. Extensive experiments demonstrate the efficiency of our approaches.

Suggested Citation

  • Cuong Le & Tien Mai & Ngan Ha Duong & Minh Hoang Ha, 2024. "Competitive Facility Location with Market Expansion and Customer-centric Objective," Papers 2412.17021, arXiv.org.
  • Handle: RePEc:arx:papers:2412.17021
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.17021
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2021. "Optimizing facility location and design," European Journal of Operational Research, Elsevier, vol. 289(1), pages 31-43.
    2. Mai, Tien & Lodi, Andrea, 2020. "A multicut outer-approximation approach for competitive facility location under random utilities," European Journal of Operational Research, Elsevier, vol. 284(3), pages 874-881.
    3. Shanjun Li & Lang Tong & Jianwei Xing & Yiyi Zhou, 2017. "The Market for Electric Vehicles: Indirect Network Effects and Policy Design," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(1), pages 89-133.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, November.
    5. Drezner, Tammy & Drezner, Zvi & Salhi, Said, 2002. "Solving the multiple competitive facilities location problem," European Journal of Operational Research, Elsevier, vol. 142(1), pages 138-151, October.
    6. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    7. Ljubić, Ivana & Moreno, Eduardo, 2018. "Outer approximation and submodular cuts for maximum capture facility location problems with random utilities," European Journal of Operational Research, Elsevier, vol. 266(1), pages 46-56.
    8. Haase, Knut & Müller, Sven, 2014. "A comparison of linear reformulations for multinomial logit choice probabilities in facility location models," European Journal of Operational Research, Elsevier, vol. 232(3), pages 689-691.
    9. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2023. "Robust maximum capture facility location under random utility maximization models," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1128-1150.
    10. Benati, Stefano & Hansen, Pierre, 2002. "The maximum capture problem with random utilities: Problem formulation and algorithms," European Journal of Operational Research, Elsevier, vol. 143(3), pages 518-530, December.
    11. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    12. Freire, Alexandre S. & Moreno, Eduardo & Yushimito, Wilfredo F., 2016. "A branch-and-bound algorithm for the maximum capture problem with random utilities," European Journal of Operational Research, Elsevier, vol. 252(1), pages 204-212.
    13. Fosgerau, M. & Bierlaire, M., 2009. "Discrete choice models with multiplicative error terms," Transportation Research Part B: Methodological, Elsevier, vol. 43(5), pages 494-505, June.
    14. Méndez-Vogel, Gonzalo & Marianov, Vladimir & Lüer-Villagra, Armin, 2023. "The follower competitive facility location problem under the nested logit choice rule," European Journal of Operational Research, Elsevier, vol. 310(2), pages 834-846.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ngan Ha Duong & Tien Thanh Dam & Thuy Anh Ta & Tien Mai, 2022. "Joint Location and Cost Planning in Maximum Capture Facility Location under Multiplicative Random Utility Maximization," Papers 2205.07345, arXiv.org, revised Feb 2023.
    2. Georg Bechler & Claudius Steinhardt & Jochen Mackert, 2021. "On the Linear Integration of Attraction Choice Models in Business Optimization Problems," SN Operations Research Forum, Springer, vol. 2(1), pages 1-13, March.
    3. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    4. Méndez-Vogel, Gonzalo & Marianov, Vladimir & Lüer-Villagra, Armin & Eiselt, H.A., 2023. "Store location with multipurpose shopping trips and a new random utility customers’ choice model," European Journal of Operational Research, Elsevier, vol. 305(2), pages 708-721.
    5. Steven Lamontagne & Margarida Carvalho & Emma Frejinger & Bernard Gendron & Miguel F. Anjos & Ribal Atallah, 2023. "Optimising Electric Vehicle Charging Station Placement Using Advanced Discrete Choice Models," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1195-1213, September.
    6. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2023. "Robust maximum capture facility location under random utility maximization models," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1128-1150.
    7. Méndez-Vogel, Gonzalo & Marianov, Vladimir & Lüer-Villagra, Armin, 2023. "The follower competitive facility location problem under the nested logit choice rule," European Journal of Operational Research, Elsevier, vol. 310(2), pages 834-846.
    8. Mai, Tien & Lodi, Andrea, 2020. "A multicut outer-approximation approach for competitive facility location under random utilities," European Journal of Operational Research, Elsevier, vol. 284(3), pages 874-881.
    9. Lin, Yun Hui & Tian, Qingyun, 2021. "Branch-and-cut approach based on generalized benders decomposition for facility location with limited choice rule," European Journal of Operational Research, Elsevier, vol. 293(1), pages 109-119.
    10. Basciftci, Beste & Ahmed, Shabbir & Shen, Siqian, 2021. "Distributionally robust facility location problem under decision-dependent stochastic demand," European Journal of Operational Research, Elsevier, vol. 292(2), pages 548-561.
    11. G.-Tóth, Boglárka & Anton-Sanchez, Laura & Fernández, José, 2024. "A Huff-like location model with quality adjustment and/or closing of existing facilities," European Journal of Operational Research, Elsevier, vol. 313(3), pages 937-953.
    12. Ralf Krohn & Sven Müller & Knut Haase, 2021. "Preventive healthcare facility location planning with quality-conscious clients," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 59-87, March.
    13. Lin, Yun Hui & Wang, Yuan & He, Dongdong & Lee, Loo Hay, 2020. "Last-mile delivery: Optimal locker location under multinomial logit choice model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    14. Kitthamkesorn, Songyot & Chen, Anthony & Ryu, Seungkyu & Opasanon, Sathaporn, 2024. "Maximum capture problem based on paired combinatorial weibit model to determine park-and-ride facility locations," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    15. Gu, Yu & Chen, Anthony & Kitthamkesorn, Songyot & Jang, Sunghoon, 2024. "Alternate closed-form weibit-based model for assessing travel choice with an oddball alternative," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    16. Julia Heger & Robert Klein, 2024. "Assortment optimization: a systematic literature review," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1099-1161, December.
    17. Tien Mai & Arunesh Sinha, 2022. "Safe Delivery of Critical Services in Areas with Volatile Security Situation via a Stackelberg Game Approach," Papers 2204.11451, arXiv.org.
    18. Li, Baibing & Hensher, David A., 2017. "Risky weighting in discrete choice," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 1-21.
    19. Hoyos, David, 2010. "The state of the art of environmental valuation with discrete choice experiments," Ecological Economics, Elsevier, vol. 69(8), pages 1595-1603, June.
    20. Roemer, Nils & Müller, Sven & Voigt, Guido, 2023. "A choice-based optimization approach for contracting in supply chains," European Journal of Operational Research, Elsevier, vol. 305(1), pages 271-286.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.17021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.