IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i12p4995-d1413029.html
   My bibliography  Save this article

An Energy-Efficient Logistic Drone Routing Method Considering Dynamic Drone Speed and Payload

Author

Listed:
  • Kunpeng Wu

    (Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 511442, China)

  • Shaofeng Lu

    (Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 511442, China)

  • Haoqin Chen

    (Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 511442, China)

  • Minling Feng

    (Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 511442, China)

  • Zenghao Lu

    (Fujian Zhongli Technology Co., Quanzhou 362100, China)

Abstract

Unmanned aerial vehicles (UAVs), or drones, are recognized for their potential to improve efficiency in last-mile delivery. Unlike the vehicle routing problem, drone route design is challenging due to several operational signatures, such as speed optimization, multi-trip operation, and energy consumption estimation. Drone energy consumption is a nonlinear function of both speed and payload. Moreover, the high speed of drones can significantly curtail the drone range, thereby limiting the efficiency of drone delivery systems. This paper addresses the trade-off between speed and flight range in a multi-trip drone routing problem with variable flight speeds (DRP–VFS). We propose a new model to specifically consider energy constraints using a nonlinear energy consumption model and treat drone speeds as decision variables. The DRP–VFS is initially formulated using mixed-integer linear programming (MILP) to minimize energy consumption. To solve large-scale instances, we propose a three-phase adaptive large neighborhood search (ALNS) algorithm and compare its performance with a commercial MIP solver. The experimental results demonstrate that the proposed method is capable of effectively identifying suboptimal solutions in practical scenarios. Furthermore, results indicate that operating drones at variable speeds leads to about 21% energy savings compared to fixed speeds, with advantages in cost savings and range extension.

Suggested Citation

  • Kunpeng Wu & Shaofeng Lu & Haoqin Chen & Minling Feng & Zenghao Lu, 2024. "An Energy-Efficient Logistic Drone Routing Method Considering Dynamic Drone Speed and Payload," Sustainability, MDPI, vol. 16(12), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:4995-:d:1413029
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/12/4995/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/12/4995/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2020. "Drone routing with energy function: Formulation and exact algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 364-387.
    2. Wang, Zheng & Sheu, Jiuh-Biing, 2019. "Vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 350-364.
    3. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing," Annals of Operations Research, Springer, vol. 327(1), pages 89-127, August.
    2. Madani, Batool & Ndiaye, Malick & Salhi, Said, 2024. "Hybrid truck-drone delivery system with multi-visits and multi-launch and retrieval locations: Mathematical model and adaptive variable neighborhood search with neighborhood categorization," European Journal of Operational Research, Elsevier, vol. 316(1), pages 100-125.
    3. Xia, Yang & Zeng, Wenjia & Zhang, Canrong & Yang, Hai, 2023. "A branch-and-price-and-cut algorithm for the vehicle routing problem with load-dependent drones," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 80-110.
    4. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    5. Jiang, Jie & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A multi-visit flexible-docking vehicle routing problem with drones for simultaneous pickup and delivery services," European Journal of Operational Research, Elsevier, vol. 312(1), pages 125-137.
    6. Liu, Zeyu & Li, Xueping & Khojandi, Anahita, 2022. "The flying sidekick traveling salesman problem with stochastic travel time: A reinforcement learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    7. Pei, Zhi & Dai, Xu & Yuan, Yilun & Du, Rui & Liu, Changchun, 2021. "Managing price and fleet size for courier service with shared drones," Omega, Elsevier, vol. 104(C).
    8. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2020. "Drone routing with energy function: Formulation and exact algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 364-387.
    9. Tengkuo Zhu & Stephen D. Boyles & Avinash Unnikrishnan, 2024. "Battery Electric Vehicle Traveling Salesman Problem with Drone," Networks and Spatial Economics, Springer, vol. 24(1), pages 49-97, March.
    10. Vincent F. Yu & Shih-Wei Lin & Panca Jodiawan & Yu-Chi Lai, 2023. "Solving the Flying Sidekick Traveling Salesman Problem by a Simulated Annealing Heuristic," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    11. Lixin Shen & Jie Sun & Dong Yang, 2024. "Research on Path Optimization for Collaborative UAVs and Mothership Monitoring of Air Pollution from Port Vessels," Sustainability, MDPI, vol. 16(12), pages 1-33, June.
    12. Yin, Yunqiang & Li, Dongwei & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Wang, Sutong, 2023. "A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1125-1144.
    13. Zhao, Lei & Bi, Xinhua & Li, Gendao & Dong, Zhaohui & Xiao, Ni & Zhao, Anni, 2022. "Robust traveling salesman problem with multiple drones: Parcel delivery under uncertain navigation environments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    14. Tiniç, Gizem Ozbaygin & Karasan, Oya E. & Kara, Bahar Y. & Campbell, James F. & Ozel, Aysu, 2023. "Exact solution approaches for the minimum total cost traveling salesman problem with multiple drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 81-123.
    15. Amine Masmoudi, M. & Mancini, Simona & Baldacci, Roberto & Kuo, Yong-Hong, 2022. "Vehicle routing problems with drones equipped with multi-package payload compartments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    16. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2020. "Two-echelon vehicle routing problem with time windows and mobile satellites," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 179-201.
    17. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    18. Scherr, Yannick Oskar & Hewitt, Mike & Neumann Saavedra, Bruno Albert & Mattfeld, Dirk Christian, 2020. "Dynamic discretization discovery for the service network design problem with mixed autonomous fleets," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 164-195.
    19. Yin, Yunqiang & Yang, Yongjian & Yu, Yugang & Wang, Dujuan & Cheng, T.C.E., 2023. "Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    20. Giuseppe Aiello & Rosalinda Inguanta & Giusj D’Angelo & Mario Venticinque, 2021. "Energy Consumption Model of Aerial Urban Logistic Infrastructures," Energies, MDPI, vol. 14(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:4995-:d:1413029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.