IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v248y2022ics0925527322000524.html
   My bibliography  Save this article

The value of the Physical Internet on the meals-on-wheels delivery system

Author

Listed:
  • Lin, Meiyan
  • Lin, Shaodan
  • Ma, Lijun
  • Zhang, Lianmin

Abstract

Driven by innovative technologies such as the Internet of Things, blockchain, and mobile applications, meals-on-wheels (MOW) delivery services have shifted from a self-delivery (SD) model to outsourcing-delivery (OD) and volunteer-delivery (VD) models. The OD model is implemented by for-profit on-demand food-delivery platforms, and the VD model is implemented by non-profit service-sharing time banks designed for older adults. This work explored the concept of the Physical Internet (PI) to MOW delivery. First, we integrated recyclable PI-containers, smart lockers, and a PI-management system into SD, VD, and OD models to develop PI-enabled models. Second, we proposed simplified novel multi-objective mixed-integer linear programming models combined with a hierarchical clustering algorithm for the MOW delivery problem. The optimal planning decision minimizes the service providers’ costs while maximizes customer satisfaction. Third, we compared different PI-enabled models in terms of service cost and customer satisfaction and conduct sensitivity analyses of key parameters, such as objective-related parameters (i.e., cost of traveling and dispatching) and constraint-related parameters (i.e., number of parking sites and geographical distributions of demand). Finally, we verified the proposed solution through a real-life case. Our results indicate that the VD model exhibited strong adaptability to PI. The OD model is more sensitive to the marginal traveling cost, the VD model is more sensitive to the fixed dispatching cost, and both the SD and VD models are sensitive to the geographical demand distribution and number of clusters. PI in the VD model improves meal quality in almost all situations. This study can guide IHC centers on the adoption of PI and MOW models.

Suggested Citation

  • Lin, Meiyan & Lin, Shaodan & Ma, Lijun & Zhang, Lianmin, 2022. "The value of the Physical Internet on the meals-on-wheels delivery system," International Journal of Production Economics, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:proeco:v:248:y:2022:i:c:s0925527322000524
    DOI: 10.1016/j.ijpe.2022.108459
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527322000524
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2022.108459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Yang & Wang, Sihan & Wang, Junwei & Huang, Min, 2019. "A branch-and-price algorithm for the heterogeneous fleet green vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 511-527.
    2. Volodymyr Babich & Gilles Hilary, 2020. "OM Forum—Distributed Ledgers and Operations: What Operations Management Researchers Should Know About Blockchain Technology," Manufacturing & Service Operations Management, INFORMS, vol. 22(2), pages 223-245, March.
    3. Mehran Fazili & Uday Venkatadri & Pemberton Cyrus & Mahdi Tajbakhsh, 2017. "Physical Internet, conventional and hybrid logistic systems: a routing optimisation-based comparison using the Eastern Canada road network case study," International Journal of Production Research, Taylor & Francis Journals, vol. 55(9), pages 2703-2730, May.
    4. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    5. H Yildiz & M P Johnson & S Roehrig, 2013. "Planning for meals-on-wheels: algorithms and application," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(10), pages 1540-1550, October.
    6. Melkonyan, Ani & Gruchmann, Tim & Lohmar, Fabian & Kamath, Vasanth & Spinler, Stefan, 2020. "Sustainability assessment of last-mile logistics and distribution strategies: The case of local food networks," International Journal of Production Economics, Elsevier, vol. 228(C).
    7. Marques, Alexandra & Soares, Ricardo & Santos, Maria João & Amorim, Pedro, 2020. "Integrated planning of inbound and outbound logistics with a Rich Vehicle Routing Problem with backhauls," Omega, Elsevier, vol. 92(C).
    8. Niu, Baozhuang & Li, Qiyang & Mu, Zihao & Chen, Lei & Ji, Ping, 2021. "Platform logistics or self-logistics? Restaurants’ cooperation with online food-delivery platform considering profitability and sustainability," International Journal of Production Economics, Elsevier, vol. 234(C).
    9. Meiyan Lin & Kwai Sang Chin & Lijun Ma & Kwok Leung Tsui, 2020. "A comprehensive multi-objective mixed integer nonlinear programming model for an integrated elderly care service districting problem," Annals of Operations Research, Springer, vol. 291(1), pages 499-529, August.
    10. Yves Sallez & Shenle Pan & Benoit Montreuil & Thierry Berger & Eric Ballot, 2016. "On the activeness of intelligent Physical Internet containers," Post-Print hal-01491403, HAL.
    11. Gomes, Maria Isabel & Ramos, Tânia Rodrigues Pereira, 2019. "Modelling and (re-)planning periodic home social care services with loyalty and non-loyalty features," European Journal of Operational Research, Elsevier, vol. 277(1), pages 284-299.
    12. Wilpen Gorr & Michael Johnson & Stephen Roehrig, 2001. "Spatial decision support system for home-delivered services," Journal of Geographical Systems, Springer, vol. 3(2), pages 181-197, August.
    13. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2020. "Drone routing with energy function: Formulation and exact algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 364-387.
    14. Yu-Tse Lee & Jhan-Jia Lin & Jane Yung-Jen Hsu & Ja-Ling Wu, 2020. "A Time Bank System Design on the Basis of Hyperledger Fabric Blockchain," Future Internet, MDPI, vol. 12(5), pages 1-16, May.
    15. Marlin W. Ulmer & Barrett W. Thomas & Ann Melissa Campbell & Nicholas Woyak, 2021. "The Restaurant Meal Delivery Problem: Dynamic Pickup and Delivery with Deadlines and Random Ready Times," Transportation Science, INFORMS, vol. 55(1), pages 75-100, 1-2.
    16. Phuong Khanh Nguyen & Teodor Gabriel Crainic & Michel Toulouse, 2017. "Multi-trip pickup and delivery problem with time windows and synchronization," Annals of Operations Research, Springer, vol. 253(2), pages 899-934, June.
    17. Wang, Zheng & Sheu, Jiuh-Biing, 2019. "Vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 350-364.
    18. Hewitt, Mike & Nowak, Maciek & Gala, Leo, 2015. "Consolidating home meal delivery with limited operational disruption," European Journal of Operational Research, Elsevier, vol. 243(1), pages 281-291.
    19. Kim, Nayeon & Montreuil, Benoit & Klibi, Walid & Kholgade, Nitish, 2021. "Hyperconnected urban fulfillment and delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    20. Michael P. Johnson, 2001. "A spatial decision support system prototype for housing mobility program planning," Journal of Geographical Systems, Springer, vol. 3(1), pages 49-67, May.
    21. Baldacci, Roberto & Mingozzi, Aristide & Roberti, Roberto, 2012. "Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints," European Journal of Operational Research, Elsevier, vol. 218(1), pages 1-6.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chan, Hau-Ling & Choi, Tsan-Ming & Mendez De la Torre, Daniela, 2023. "The “SMARTER” framework and real application cases of blockchain," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    2. Ma, Shigui & He, Yong & Gu, Ran & Yeh, Chung-Hsing, 2024. "How to cooperate in a three-tier food delivery service supply chain," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nair, D.J. & Grzybowska, H. & Fu, Y. & Dixit, V.V., 2018. "Scheduling and routing models for food rescue and delivery operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 18-32.
    2. Mahmoudi, Monirehalsadat & Shirzad, Khadijeh & Verter, Vedat, 2022. "Decision support models for managing food aid supply chains: A systematic literature review," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    3. Sun, Xuting & Fang, Minghao & Guo, Shu & Hu, Yue, 2024. "UAV-rider coordinated dispatching for the on-demand delivery service provider," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    4. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing," Annals of Operations Research, Springer, vol. 327(1), pages 89-127, August.
    5. Ma, Shigui & He, Yong & Gu, Ran & Yeh, Chung-Hsing, 2024. "How to cooperate in a three-tier food delivery service supply chain," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    6. Niu, Baozhuang & Ruan, Yiyuan & Xu, Haotao, 2023. "Turn a blind eye? E-tailer's blockchain participation considering upstream competition between copycats and brands," International Journal of Production Economics, Elsevier, vol. 265(C).
    7. Shi, Yong & Yang, Junhao & Han, Qian & Song, Hao & Guo, Haixiang, 2024. "Optimal decision-making of post-disaster emergency material scheduling based on helicopter–truck–drone collaboration," Omega, Elsevier, vol. 127(C).
    8. Amine Masmoudi, M. & Mancini, Simona & Baldacci, Roberto & Kuo, Yong-Hong, 2022. "Vehicle routing problems with drones equipped with multi-package payload compartments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    9. Madani, Batool & Ndiaye, Malick & Salhi, Said, 2024. "Hybrid truck-drone delivery system with multi-visits and multi-launch and retrieval locations: Mathematical model and adaptive variable neighborhood search with neighborhood categorization," European Journal of Operational Research, Elsevier, vol. 316(1), pages 100-125.
    10. Xia, Yang & Zeng, Wenjia & Zhang, Canrong & Yang, Hai, 2023. "A branch-and-price-and-cut algorithm for the vehicle routing problem with load-dependent drones," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 80-110.
    11. A. Mor & M. G. Speranza, 2022. "Vehicle routing problems over time: a survey," Annals of Operations Research, Springer, vol. 314(1), pages 255-275, July.
    12. Rey, David & Almi’ani, Khaled & Nair, Divya J., 2018. "Exact and heuristic algorithms for finding envy-free allocations in food rescue pickup and delivery logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 19-46.
    13. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    14. Jiang, Jie & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A multi-visit flexible-docking vehicle routing problem with drones for simultaneous pickup and delivery services," European Journal of Operational Research, Elsevier, vol. 312(1), pages 125-137.
    15. Arnau, Quim & Barrena, Eva & Panadero, Javier & de la Torre, Rocio & Juan, Angel A., 2022. "A biased-randomized discrete-event heuristic for coordinated multi-vehicle container transport across interconnected networks," European Journal of Operational Research, Elsevier, vol. 302(1), pages 348-362.
    16. Orenstein, Ido & Raviv, Tal, 2022. "Parcel delivery using the hyperconnected service network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    17. Nguyen, Tiep & Duong, Quang Huy & Nguyen, Truong Van & Zhu, You & Zhou, Li, 2022. "Knowledge mapping of digital twin and physical internet in Supply Chain Management: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 244(C).
    18. Kunpeng Wu & Shaofeng Lu & Haoqin Chen & Minling Feng & Zenghao Lu, 2024. "An Energy-Efficient Logistic Drone Routing Method Considering Dynamic Drone Speed and Payload," Sustainability, MDPI, vol. 16(12), pages 1-20, June.
    19. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2023. "A branch-and-price heuristic algorithm for the bunkering operation problem of a liquefied natural gas bunkering station in the inland waterways," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 145-170.
    20. Liu, Zeyu & Li, Xueping & Khojandi, Anahita, 2022. "The flying sidekick traveling salesman problem with stochastic travel time: A reinforcement learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:248:y:2022:i:c:s0925527322000524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.