IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v81y2015ip2p555-576.html
   My bibliography  Save this article

Transportation network design for maximizing space–time accessibility

Author

Listed:
  • Tong, Lu
  • Zhou, Xuesong
  • Miller, Harvey J.

Abstract

One of the goals of transportation system construction and management is to improve individuals’ accessibility or the ease of reaching desired activities, destinations and services. However, many transportation network design models instead focus on maximizing individuals’ mobility or the ease of movement within the network. By adapting a space–time prism analysis framework, this paper aims to address a new urban network design problem to maximize the system-wide transportation accessibility between major activity locations, subject to a given highway construction budget. By constructing a time-dependent space–time network, we formulate the problem as a linear integer programming model to maximize the number of accessible activity locations within travel time budget for road users. A Lagrangian relaxation solution framework effectively decomposes the original complex problem into classical subproblems such as knapsack and time-dependent least cost problems. Various examples and discussions are provided to consider the effectiveness of the proposed method in modeling accessibility-enhancement strategies such as congestion mitigation and land use policies.

Suggested Citation

  • Tong, Lu & Zhou, Xuesong & Miller, Harvey J., 2015. "Transportation network design for maximizing space–time accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 555-576.
  • Handle: RePEc:eee:transb:v:81:y:2015:i:p2:p:555-576
    DOI: 10.1016/j.trb.2015.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126151500171X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2015.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luathep, Paramet & Sumalee, Agachai & Lam, William H.K. & Li, Zhi-Chun & Lo, Hong K., 2011. "Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 808-827, June.
    2. Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.
    3. Murawski, Lisa & Church, Richard L., 2009. "Improving accessibility to rural health services: The maximal covering network improvement problem," Socio-Economic Planning Sciences, Elsevier, vol. 43(2), pages 102-110, June.
    4. Anthony Chen & Zhong Zhou & Piya Chootinan & Seungkyu Ryu & Chao Yang & S. Wong, 2011. "Transport Network Design Problem under Uncertainty: A Review and New Developments," Transport Reviews, Taylor & Francis Journals, vol. 31(6), pages 743-768.
    5. Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.
    6. Wachs, Martin & Kumagai, T. Gordon, 1973. "Physical accessibility as a social indicator," Socio-Economic Planning Sciences, Elsevier, vol. 7(5), pages 437-456, October.
    7. Mokhtarian, Patricia L. & Salomon, Ilan, 2001. "How derived is the demand for travel? Some conceptual and measurement considerations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(8), pages 695-719, September.
    8. R W Vickerman, 1974. "Accessibility, Attraction, and Potential: A Review of Some Concepts and Their Use in Determining Mobility," Environment and Planning A, , vol. 6(6), pages 675-691, December.
    9. Small, Kenneth A & Rosen, Harvey S, 1981. "Applied Welfare Economics with Discrete Choice Models," Econometrica, Econometric Society, vol. 49(1), pages 105-130, January.
    10. Recker, W. W., 2001. "A bridge between travel demand modeling and activity-based travel analysis," Transportation Research Part B: Methodological, Elsevier, vol. 35(5), pages 481-506, June.
    11. Jeffery L. Kennington & Charles D. Nicholson, 2010. "The Uncapacitated Time-Space Fixed-Charge Network Flow Problem: An Empirical Investigation of Procedures for Arc Capacity Assignment," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 326-337, May.
    12. Yang, Lixing & Zhou, Xuesong, 2014. "Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time path problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 22-44.
    13. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    14. A G Wilson, 1971. "A Family of Spatial Interaction Models, and Associated Developments," Environment and Planning A, , vol. 3(1), pages 1-32, March.
    15. Daganzo, Carlos F., 2010. "Structure of competitive transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 434-446, May.
    16. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    17. An, Kun & Lo, Hong K., 2014. "Ferry service network design with stochastic demand under user equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 70-89.
    18. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    19. Ghiani, Gianpaolo & Guerriero, Francesca & Laporte, Gilbert & Musmanno, Roberto, 2003. "Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies," European Journal of Operational Research, Elsevier, vol. 151(1), pages 1-11, November.
    20. X. Zhao & P. B. Luh & J. Wang, 1999. "Surrogate Gradient Algorithm for Lagrangian Relaxation," Journal of Optimization Theory and Applications, Springer, vol. 100(3), pages 699-712, March.
    21. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    22. Chen, Shaopei & Claramunt, Christophe & Ray, Cyril, 2014. "A spatio-temporal modelling approach for the study of the connectivity and accessibility of the Guangzhou metropolitan network," Journal of Transport Geography, Elsevier, vol. 36(C), pages 12-23.
    23. ORTEGA , Francisco & WOLSEY, Laurence A., 2003. "A branch-and-cut algorithm for the single-commodity, uncapacitated, fixed-charge network flow problem," LIDAM Reprints CORE 1611, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    24. Weibull, Jorgen W., 1976. "An axiomatic approach to the measurement of accessibility," Regional Science and Urban Economics, Elsevier, vol. 6(4), pages 357-379, December.
    25. J W Weibull, 1980. "On the Numerical Measurement of Accessibility," Environment and Planning A, , vol. 12(1), pages 53-67, January.
    26. Michael A. P. Taylor, 2008. "Critical Transport Infrastructure in Urban Areas: Impacts of Traffic Incidents Assessed Using Accessibility‐Based Network Vulnerability Analysis," Growth and Change, Wiley Blackwell, vol. 39(4), pages 593-616, December.
    27. Kang, Jee Eun & Chow, Joseph Y.J. & Recker, Will W., 2013. "On activity-based network design problems," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 398-418.
    28. Sohn, Jungyul, 2006. "Evaluating the significance of highway network links under the flood damage: An accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 491-506, July.
    29. Anthony Chen & Chao Yang & Sirisak Kongsomsaksakul & Ming Lee, 2007. "Network-based Accessibility Measures for Vulnerability Analysis of Degradable Transportation Networks," Networks and Spatial Economics, Springer, vol. 7(3), pages 241-256, September.
    30. Dong, Xiaojing & Ben-Akiva, Moshe E. & Bowman, John L. & Walker, Joan L., 2006. "Moving from trip-based to activity-based measures of accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 163-180, February.
    31. Jesús Sáez Aguado, 2009. "Fixed Charge Transportation Problems: a new heuristic approach based on Lagrangean relaxation and the solving of core problems," Annals of Operations Research, Springer, vol. 172(1), pages 45-69, November.
    32. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di, Zhen & Yang, Lixing & Qi, Jianguo & Gao, Ziyou, 2018. "Transportation network design for maximizing flow-based accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 209-238.
    2. Loder, Allister & Bliemer, Michiel C.J. & Axhausen, Kay W., 2022. "Optimal pricing and investment in a multi-modal city — Introducing a macroscopic network design problem based on the MFD," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 113-132.
    3. Sun, Yanshuo & Schonfeld, Paul, 2015. "Stochastic capacity expansion models for airport facilities," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 1-18.
    4. Bell, Michael G.H. & Pan, Jing-Jing & Teye, Collins & Cheung, Kam-Fung & Perera, Supun, 2020. "An entropy maximizing approach to the ferry network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 15-28.
    5. Siying Zhu & Feng Zhu, 2020. "Multi-objective bike-way network design problem with space–time accessibility constraint," Transportation, Springer, vol. 47(5), pages 2479-2503, October.
    6. Kang, Jee Eun & Chow, Joseph Y.J. & Recker, Will W., 2013. "On activity-based network design problems," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 398-418.
    7. Shen, Chan & Sun, Yao & Bai, Zijian & Cui, Hongjun, 2021. "Real-time customized bus routes design with optimal passenger and vehicle matching based on column generation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    8. Naqavi, Fatemeh & Sundberg, Marcus & Västberg, Oskar Blom & Karlström, Anders & Hugosson, Muriel Beser, 2023. "Mobility constraints and accessibility to work: Application to Stockholm," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    9. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    10. Tan, Zhijia & Yang, Hai & Tan, Wei & Li, Zhichun, 2016. "Pareto-improving transportation network design and ownership regimes," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 292-309.
    11. Liu, Haoxiang & Szeto, W.Y. & Long, Jiancheng, 2019. "Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 284-307.
    12. Fragkos, Ioannis & Cordeau, Jean-François & Jans, Raf, 2021. "Decomposition methods for large-scale network expansion problems," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 60-80.
    13. Cascetta, Ennio & Cartenì, Armando & Montanino, Marcello, 2016. "A behavioral model of accessibility based on the number of available opportunities," Journal of Transport Geography, Elsevier, vol. 51(C), pages 45-58.
    14. Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.
    15. Xiang Zhang & S. Travis Waller, 2019. "Implications of link-based equity objectives on transportation network design problem," Transportation, Springer, vol. 46(5), pages 1559-1589, October.
    16. Peng, Ya-Ting & Li, Zhi-Chun & Schonfeld, Paul, 2019. "Development of rail transit network over multiple time periods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 235-250.
    17. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    18. Wang, David Z.W. & Liu, Haoxiang & Szeto, W.Y., 2015. "A novel discrete network design problem formulation and its global optimization solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 213-230.
    19. Fangxia Zhao & Jianjun Wu & Huijun Sun & Ziyou Gao & Ronghui Liu, 2016. "Population-driven Urban Road Evolution Dynamic Model," Networks and Spatial Economics, Springer, vol. 16(4), pages 997-1018, December.
    20. Hua Wang & Xiaoning Zhang, 2017. "Game theoretical transportation network design among multiple regions," Annals of Operations Research, Springer, vol. 249(1), pages 97-117, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:81:y:2015:i:p2:p:555-576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.