IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v69y2014icp447-460.html
   My bibliography  Save this article

Models of bus boarding and alighting dynamics

Author

Listed:
  • Sun, Lijun
  • Tirachini, Alejandro
  • Axhausen, Kay W.
  • Erath, Alexander
  • Lee, Der-Horng

Abstract

Understanding the dynamics of boarding/alighting activities and its impact on bus dwell times is crucial to improving bus service levels. However, research is limited as conventional data collection methods are both time and labour intensive. In this paper, we present the first use of smart card data to study passenger boarding/alighting behaviour and its impact on bus dwell time. Given the nature of these data, we focus on passenger activity time and do not account for the time necessary to open and close doors. We study single decker, double decker and articulated buses and identify the specific effects of floor/entrance type, number of activities and occupancy on both boarding and alighting dynamics. A linear relationship between average boarding and alighting times and their respective standard deviations is also found, whereas the variability of boarding and alighting time decreases with the number of passengers boarding and alighting. After observing the cumulative boarding/alighting processes under different occupancy conditions, we propose a new model to estimate passenger activity time, by introducing critical occupancy – a parameter incorporating the friction between boarding/alighting and on-board passengers. We conduct regression analyses with the proposed and another popular model for simultaneous boarding/alighting processes, finding that the critical occupancy plays a significant role in determining the regime of boarding and alighting processes and the overall activity time. Our results provide potential implications for practice and policy, such as identifying optimal vehicle type for a particular route and modelling transit service reliability.

Suggested Citation

  • Sun, Lijun & Tirachini, Alejandro & Axhausen, Kay W. & Erath, Alexander & Lee, Der-Horng, 2014. "Models of bus boarding and alighting dynamics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 447-460.
  • Handle: RePEc:eee:transa:v:69:y:2014:i:c:p:447-460
    DOI: 10.1016/j.tra.2014.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856414002183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2014.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Strathman & Thomas Kimpel & Kenneth Dueker & Richard Gerhart & Steve Callas, 2002. "Evaluation of transit operations: data applications of Tri-Met's automated Bus Dispatching System," Transportation, Springer, vol. 29(3), pages 321-345, August.
    2. Sergio Jara-Díaz & Alejandro Tirachini, 2013. "Urban Bus Transport: Open All Doors for Boarding," Journal of Transport Economics and Policy, University of Bath, vol. 47(1), pages 91-106, January.
    3. Strathman, James G. & Hopper, Janet R., 1993. "Empirical analysis of bus transit on-time performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(2), pages 93-100, April.
    4. Hollander, Yaron, 2006. "Direct versus indirect models for the effects of unreliability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(9), pages 699-711, November.
    5. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    6. Homero Larrain & Juan Muñoz, 2008. "Public Transit Corridor Assignment Assuming Congestion Due to Passenger Boarding and Alighting," Networks and Spatial Economics, Springer, vol. 8(2), pages 241-256, September.
    7. Batley, Richard & Ibáñez, J. Nicolás, 2012. "Randomness in preference orderings, outcomes and attribute tastes: An application to journey time risk," Journal of choice modelling, Elsevier, vol. 5(3), pages 157-175.
    8. Mark D. Hickman, 2001. "An Analytic Stochastic Model for the Transit Vehicle Holding Problem," Transportation Science, INFORMS, vol. 35(3), pages 215-237, August.
    9. Bates, John & Polak, John & Jones, Peter & Cook, Andrew, 0. "The valuation of reliability for personal travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(2-3), pages 191-229, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Lijun & Axhausen, Kay W., 2016. "Understanding urban mobility patterns with a probabilistic tensor factorization framework," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 511-524.
    2. El-Geneidy, Ahmed & van Lierop, Dea & Grisé, Emily & Boisjoly, Geneviève & Swallow, Derrick & Fordham, Lesley & Herrmann, Thomas, 2017. "Get on board: Assessing an all-door boarding pilot project in Montreal, Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 114-124.
    3. Loder, Allister & Bliemer, Michiel C.J. & Axhausen, Kay W., 2022. "Optimal pricing and investment in a multi-modal city — Introducing a macroscopic network design problem based on the MFD," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 113-132.
    4. Cuauhtemoc Anda & Alexander Erath & Pieter Jacobus Fourie, 2017. "Transport modelling in the age of big data," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 19-42, August.
    5. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
    6. Ji, Yanjie & Gao, Liangpeng & Chen, Dandan & Ma, Xinwei & Zhang, Ruochen, 2018. "How does a static measure influence passengers’ boarding behaviors and bus dwell time? Simulated evidence from Nanjing bus stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 13-25.
    7. Márquez, Luis & Alfonso A, Julieth V. & Poveda, Juan C., 2019. "In-vehicle crowding: Integrating tangible attributes, attitudes, and perceptions in a choice context between BRT and metro," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 452-465.
    8. Bai, Qiaowen & Ong, Ghim Ping, 2023. "Similarity-based bus services assignment with capacity constraint for staggered bus stops," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    9. Jiajie Yu & Yanjie Ji & Liangpeng Gao & Qi Gao, 2019. "Optimization of Metro Passenger Organizing of Alighting and Boarding Processes: Simulated Evidence from the Metro Station in Nanjing, China," Sustainability, MDPI, vol. 11(13), pages 1-20, July.
    10. You-Zhi Zeng & Bin Ran & Ning Zhang & Xiaobao Yang & Jia-Jun Shen & She-Jun Deng, 2018. "Optimal Pricing and Service for the Peak-Period Bus Commuting Inefficiency of Boarding Queuing Congestion," Sustainability, MDPI, vol. 10(10), pages 1-14, September.
    11. Liu, Xiaodong & Song, Weiguo & Fu, Libi & Fang, Zhiming, 2016. "Experimental study of pedestrian inflow in a room with a separate entrance and exit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 224-238.
    12. Wang, Zhichao & Jiang, Rui & Jiang, Yu & Gao, Ziyou & Liu, Ronghui, 2024. "Modelling bus bunching along a common line corridor considering passenger arrival time and transfer choice under stochastic travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    13. Wang, Pengfei & Chen, Xuewu & Zheng, Yue & Cheng, Long & Wang, Yinhai & Lei, Da, 2021. "Providing real-time bus crowding information for passengers: A novel policy to promote high-frequency transit performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 316-329.
    14. Schmöcker, Jan-Dirk & Sun, Wenzhe & Fonzone, Achille & Liu, Ronghui, 2016. "Bus bunching along a corridor served by two lines," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 300-317.
    15. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Simulation-based robust optimization of limited-stop bus service with vehicle overtaking and dynamics: A response surface methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 61-81.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chakrabarti, Sandip & Giuliano, Genevieve, 2015. "Does service reliability determine transit patronage? Insights from the Los Angeles Metro bus system," Transport Policy, Elsevier, vol. 42(C), pages 12-20.
    2. Martínez-Estupiñan, Yerly & Delgado, Felipe & Muñoz, Juan Carlos & Watkins, Kari E., 2023. "Improving the performance of headway control tools by using individual driving speed data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    3. Li, Baibing, 2019. "Measuring travel time reliability and risk: A nonparametric approach," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 152-171.
    4. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    5. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2016. "Designing robust schedule coordination scheme for transit networks with safety control margins," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 495-519.
    6. Tétreault, Paul R. & El-Geneidy, Ahmed M., 2010. "Estimating bus run times for new limited-stop service using archived AVL and APC data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(6), pages 390-402, July.
    7. Dixit, Vinayak V. & Harb, Rami C. & Martínez-Correa, Jimmy & Rutström, Elisabet E., 2015. "Measuring risk aversion to guide transportation policy: Contexts, incentives, and respondents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 15-34.
    8. Mahmood Mahmoodi Nesheli & Avishai (Avi) Ceder & Robin Brissaud, 2017. "Public transport service-quality elements based on real-time operational tactics," Transportation, Springer, vol. 44(5), pages 957-975, September.
    9. Zhang, Zheng & Fujii, Hidemichi & Managi, Shunsuke, 2014. "How does Commuting Behavior Change Due to Incentives? An Empirical Study of the Beijing Subway System," MPRA Paper 54691, University Library of Munich, Germany.
    10. Fosgerau, Mogens & Karlström, Anders, 2010. "The value of reliability," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 38-49, January.
    11. Klumpenhouwer, W. & Wirasinghe, S.C., 2018. "Optimal time point configuration of a bus route - A Markovian approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 209-227.
    12. van Loon, Ruben & Rietveld, Piet & Brons, Martijn, 2011. "Travel-time reliability impacts on railway passenger demand: a revealed preference analysis," Journal of Transport Geography, Elsevier, vol. 19(4), pages 917-925.
    13. Berrebi, Simon J. & Watkins, Kari E. & Laval, Jorge A., 2015. "A real-time bus dispatching policy to minimize passenger wait on a high frequency route," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 377-389.
    14. de Jong, Gerard C. & Bliemer, Michiel C.J., 2015. "On including travel time reliability of road traffic in appraisal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 80-95.
    15. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    16. Abegaz, Dereje & Hjorth, Katrine & Rich, Jeppe, 2017. "Testing the slope model of scheduling preferences on stated preference data," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 409-436.
    17. Soza-Parra, Jaime & Raveau, Sebastián & Muñoz, Juan Carlos, 2021. "Travel preferences of public transport users under uneven headways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 61-75.
    18. Batley, Richard & Ibáñez, J. Nicolás, 2012. "Randomness in preference orderings, outcomes and attribute tastes: An application to journey time risk," Journal of choice modelling, Elsevier, vol. 5(3), pages 157-175.
    19. Kato, Hironori & Kaneko, Yuichiro & Soyama, Yoshihiko, 2014. "Economic benefits of urban rail projects that improve travel-time reliability: Evidence from Tokyo, Japan," Transport Policy, Elsevier, vol. 35(C), pages 202-210.
    20. Gkiotsalitis, K. & Cats, O., 2021. "At-stop control measures in public transport: Literature review and research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:69:y:2014:i:c:p:447-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.