IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v186y2024ics0965856424001903.html
   My bibliography  Save this article

Are public transit investments based on accurate forecasts? An analysis of the improving trend of transit ridership forecasts in the United States

Author

Listed:
  • Hoque, Jawad Mahmud
  • Zhang, Ian
  • Schmitt, David
  • Erhardt, Gregory D.

Abstract

Historically, forecasts of travel demand on public transit infrastructures have been found to be optimistically biased. However, there has been a lack of data available for statistically significant analysis of factors affecting the accuracy. This paper analyzes the overall trend of transit ridership forecast accuracy in the US and contextualizes it with ridership trends based on the largest yet database of 164 large-scale transit infrastructure projects in the US. We find that transit ridership is about 24.6 % lower than forecast on average with about 70 % of the projects over-predicting ridership. Forecast accuracy varies by mode, service area characteristics, familiarity with transit, ramp up period, and time span. The accuracy has been getting better over the years, particularly after 2000 with the introduction of new analytical and evaluation tools as part of the Capital Investment Grants program. Projects that have been forecasted since 2000 have average ridership about 22 % lower than forecast, compared to about 52 % lower from pre-2000. The steadily improving accuracy, however, is offset by the unexpected decline in transit ridership since 2012. Advent of ride-hailing services and improved socio-economic trends that support auto-oriented cities have prompted this decline in ridership and have affected their forecasts as well. Despite the improving trend, we find that there remains substantial deviation in the outcomes from their forecasts. This points to the need of better scrutiny of model inputs and specifications and how they interact with the built environment to unearth the underlying reasons for inaccuracy. Planners and policymakers may make use of our results to advocate for considering the uncertainty around forecasts for any project and funding decision.

Suggested Citation

  • Hoque, Jawad Mahmud & Zhang, Ian & Schmitt, David & Erhardt, Gregory D., 2024. "Are public transit investments based on accurate forecasts? An analysis of the improving trend of transit ridership forecasts in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:transa:v:186:y:2024:i:c:s0965856424001903
    DOI: 10.1016/j.tra.2024.104142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424001903
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth Button & Soogwal Doh & Matthew Hardy & Junyang Yuan & Xin Zhou, 2010. "The Accuracy Of Transit System Ridership Forecasts And Capital Cost Estimates," Articles, International Journal of Transport Economics, vol. 37(2).
    2. Bent Flyvbjerg, 2007. "Policy and Planning for Large-Infrastructure Projects: Problems, Causes, Cures," Environment and Planning B, , vol. 34(4), pages 578-597, August.
    3. Hugosson, Muriel Beser, 2005. "Quantifying uncertainties in a national forecasting model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(6), pages 531-547, July.
    4. Erhardt, Gregory D. & Hoque, Jawad Mahmud & Goyal, Vedant & Berrebi, Simon & Brakewood, Candace & Watkins, Kari E., 2022. "Why has public transit ridership declined in the United States?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 68-87.
    5. Sergio Firpo & Nicole M. Fortin & Thomas Lemieux, 2009. "Unconditional Quantile Regressions," Econometrica, Econometric Society, vol. 77(3), pages 953-973, May.
    6. Morten Skou Nicolaisen & Patrick Arthur Driscoll, 2014. "Ex-Post Evaluations of Demand Forecast Accuracy: A Literature Review," Transport Reviews, Taylor & Francis Journals, vol. 34(4), pages 540-557, July.
    7. Hoque, Jawad Mahmud & Erhardt, Gregory D. & Schmitt, David & Chen, Mei & Wachs, Martin, 2021. "Estimating the uncertainty of traffic forecasts from their historical accuracy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 339-349.
    8. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    9. Michelle L. Barnes & Anthony W. Hughes, 2002. "A quantile regression analysis of the cross section of stock market returns," Working Papers 02-2, Federal Reserve Bank of Boston.
    10. Yong Zhao & Kara Maria Kockelman, 2002. "The propagation of uncertainty through travel demand models: An exploratory analysis," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 36(1), pages 145-163.
    11. Odeck, James & Welde, Morten, 2017. "The accuracy of toll road traffic forecasts: An econometric evaluation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 73-85.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoque, Jawad Mahmud & Erhardt, Gregory D. & Schmitt, David & Chen, Mei & Wachs, Martin, 2021. "Estimating the uncertainty of traffic forecasts from their historical accuracy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 339-349.
    2. Kangsoo Kim & Jinseog Kim & Hyejin Cho & Donghyung Yook, 2024. "Determining contract conditions in a PPP project among deep uncertainty in future outturn travel demand," Transportation, Springer, vol. 51(3), pages 937-961, June.
    3. Odeck, James & Kjerkreit, Anne, 2019. "The accuracy of benefit-cost analyses (BCAs) in transportation: An ex-post evaluation of road projects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 277-294.
    4. Walker, Joan L. & Chatman, Daniel & Daziano, Ricardo & Erhardt, Gregory & Gao, Song & Mahmassani, Hani & Ory, David & Sall, Elizabeth & Bhat, Chandra & Chim, Nicholas & Daniels, Clint & Gardner, Brian, 2019. "Advancing the Science of Travel Demand Forecasting," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0v1906ts, Institute of Transportation Studies, UC Berkeley.
    5. Carlos Oliveira Cruz & Joaquim Miranda Sarmento, 2020. "Traffic forecast inaccuracy in transportation: a literature review of roads and railways projects," Transportation, Springer, vol. 47(4), pages 1571-1606, August.
    6. Korom, Philipp, 2016. "Inherited advantage: The importance of inheritance for private wealth accumulation in Europe," MPIfG Discussion Paper 16/11, Max Planck Institute for the Study of Societies.
    7. Huong Thu Le & Ha Trong Nguyen, 2018. "The evolution of the gender test score gap through seventh grade: new insights from Australia using unconditional quantile regression and decomposition," IZA Journal of Labor Economics, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 7(1), pages 1-42, December.
    8. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    9. Vincenzo Carrieri & Francesco Principe & Michele Raitano, 2018. "What makes you ‘super-rich’? New evidence from an analysis of football players’ wages," Oxford Economic Papers, Oxford University Press, vol. 70(4), pages 950-973.
    10. Jean-Marc Fournier & Isabell Koske, 2012. "The determinants of earnings inequality: evidence from quantile regressions," OECD Journal: Economic Studies, OECD Publishing, vol. 2012(1), pages 7-36.
    11. Ramos, Raul & Sanromá, Esteban & Simón, Hipólito, 2022. "Collective bargaining levels, employment and wage inequality in Spain," Journal of Policy Modeling, Elsevier, vol. 44(2), pages 375-395.
    12. Wang, Wen & Lien, Donald, 2018. "Union membership, union coverage and wage dispersion of rural migrants: Evidence from Suzhou industrial sector," China Economic Review, Elsevier, vol. 49(C), pages 96-113.
    13. Akwasi Ampofo, 2021. "Oil at work: natural resource effects on household well-being in Ghana," Empirical Economics, Springer, vol. 60(2), pages 1013-1058, February.
    14. Collischon Matthias, 2019. "Is There a Glass Ceiling over Germany?," German Economic Review, De Gruyter, vol. 20(4), pages 329-359, December.
    15. Sonja C. Kassenboehmer & Mathias G. Sinning, 2014. "Distributional Changes in the Gender Wage Gap," ILR Review, Cornell University, ILR School, vol. 67(2), pages 335-361, April.
    16. Deshpande, Ashwini & Goel, Deepti & Khanna, Shantanu, 2018. "Bad Karma or Discrimination? Male–Female Wage Gaps Among Salaried Workers in India," World Development, Elsevier, vol. 102(C), pages 331-344.
    17. Möller Joachim & Umkehrer Matthias, 2015. "Are there Long-Term Earnings Scars from Youth Unemployment in Germany?," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 235(4-5), pages 474-498, August.
    18. Domenico Depalo & Raffaela Giordano & Evangelia Papapetrou, 2015. "Public–private wage differentials in euro-area countries: evidence from quantile decomposition analysis," Empirical Economics, Springer, vol. 49(3), pages 985-1015, November.
    19. Daniel D. Schnitzlein, 2016. "A New Look at Intergenerational Mobility in Germany Compared to the U.S," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 62(4), pages 650-667, December.
    20. Balestra, Simone & Backes-Gellner, Uschi, 2017. "Heterogeneous returns to education over the wage distribution: Who profits the most?," Labour Economics, Elsevier, vol. 44(C), pages 89-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:186:y:2024:i:c:s0965856424001903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.