IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v186y2024ics0965856424001903.html
   My bibliography  Save this article

Are public transit investments based on accurate forecasts? An analysis of the improving trend of transit ridership forecasts in the United States

Author

Listed:
  • Hoque, Jawad Mahmud
  • Zhang, Ian
  • Schmitt, David
  • Erhardt, Gregory D.

Abstract

Historically, forecasts of travel demand on public transit infrastructures have been found to be optimistically biased. However, there has been a lack of data available for statistically significant analysis of factors affecting the accuracy. This paper analyzes the overall trend of transit ridership forecast accuracy in the US and contextualizes it with ridership trends based on the largest yet database of 164 large-scale transit infrastructure projects in the US. We find that transit ridership is about 24.6 % lower than forecast on average with about 70 % of the projects over-predicting ridership. Forecast accuracy varies by mode, service area characteristics, familiarity with transit, ramp up period, and time span. The accuracy has been getting better over the years, particularly after 2000 with the introduction of new analytical and evaluation tools as part of the Capital Investment Grants program. Projects that have been forecasted since 2000 have average ridership about 22 % lower than forecast, compared to about 52 % lower from pre-2000. The steadily improving accuracy, however, is offset by the unexpected decline in transit ridership since 2012. Advent of ride-hailing services and improved socio-economic trends that support auto-oriented cities have prompted this decline in ridership and have affected their forecasts as well. Despite the improving trend, we find that there remains substantial deviation in the outcomes from their forecasts. This points to the need of better scrutiny of model inputs and specifications and how they interact with the built environment to unearth the underlying reasons for inaccuracy. Planners and policymakers may make use of our results to advocate for considering the uncertainty around forecasts for any project and funding decision.

Suggested Citation

  • Hoque, Jawad Mahmud & Zhang, Ian & Schmitt, David & Erhardt, Gregory D., 2024. "Are public transit investments based on accurate forecasts? An analysis of the improving trend of transit ridership forecasts in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:transa:v:186:y:2024:i:c:s0965856424001903
    DOI: 10.1016/j.tra.2024.104142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424001903
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth Button & Soogwal Doh & Matthew Hardy & Junyang Yuan & Xin Zhou, 2010. "The Accuracy Of Transit System Ridership Forecasts And Capital Cost Estimates," Articles, International Journal of Transport Economics, vol. 37(2).
    2. Sergio Firpo & Nicole M. Fortin & Thomas Lemieux, 2009. "Unconditional Quantile Regressions," Econometrica, Econometric Society, vol. 77(3), pages 953-973, May.
    3. Hoque, Jawad Mahmud & Erhardt, Gregory D. & Schmitt, David & Chen, Mei & Wachs, Martin, 2021. "Estimating the uncertainty of traffic forecasts from their historical accuracy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 339-349.
    4. Bent Flyvbjerg, 2007. "Policy and Planning for Large-Infrastructure Projects: Problems, Causes, Cures," Environment and Planning B, , vol. 34(4), pages 578-597, August.
    5. Hugosson, Muriel Beser, 2005. "Quantifying uncertainties in a national forecasting model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(6), pages 531-547, July.
    6. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    7. Erhardt, Gregory D. & Hoque, Jawad Mahmud & Goyal, Vedant & Berrebi, Simon & Brakewood, Candace & Watkins, Kari E., 2022. "Why has public transit ridership declined in the United States?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 68-87.
    8. Michelle L. Barnes & Anthony W. Hughes, 2002. "A quantile regression analysis of the cross section of stock market returns," Working Papers 02-2, Federal Reserve Bank of Boston.
    9. Yong Zhao & Kara Maria Kockelman, 2002. "The propagation of uncertainty through travel demand models: An exploratory analysis," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 36(1), pages 145-163.
    10. Odeck, James & Welde, Morten, 2017. "The accuracy of toll road traffic forecasts: An econometric evaluation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 73-85.
    11. Morten Skou Nicolaisen & Patrick Arthur Driscoll, 2014. "Ex-Post Evaluations of Demand Forecast Accuracy: A Literature Review," Transport Reviews, Taylor & Francis Journals, vol. 34(4), pages 540-557, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoque, Jawad Mahmud & Erhardt, Gregory D. & Schmitt, David & Chen, Mei & Wachs, Martin, 2021. "Estimating the uncertainty of traffic forecasts from their historical accuracy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 339-349.
    2. Kangsoo Kim & Jinseog Kim & Hyejin Cho & Donghyung Yook, 2024. "Determining contract conditions in a PPP project among deep uncertainty in future outturn travel demand," Transportation, Springer, vol. 51(3), pages 937-961, June.
    3. Walker, Joan L. & Chatman, Daniel & Daziano, Ricardo & Erhardt, Gregory & Gao, Song & Mahmassani, Hani & Ory, David & Sall, Elizabeth & Bhat, Chandra & Chim, Nicholas & Daniels, Clint & Gardner, Brian, 2019. "Advancing the Science of Travel Demand Forecasting," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0v1906ts, Institute of Transportation Studies, UC Berkeley.
    4. Odeck, James & Kjerkreit, Anne, 2019. "The accuracy of benefit-cost analyses (BCAs) in transportation: An ex-post evaluation of road projects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 277-294.
    5. Carlos Oliveira Cruz & Joaquim Miranda Sarmento, 2020. "Traffic forecast inaccuracy in transportation: a literature review of roads and railways projects," Transportation, Springer, vol. 47(4), pages 1571-1606, August.
    6. Korom, Philipp, 2016. "Inherited advantage: The importance of inheritance for private wealth accumulation in Europe," MPIfG Discussion Paper 16/11, Max Planck Institute for the Study of Societies.
    7. Valentine Fays & Benoît Mahy & François Rycx, 2023. "Wage differences according to workers' origin: The role of working more upstream in GVCs," LABOUR, CEIS, vol. 37(2), pages 319-342, June.
    8. Huong Thu Le & Ha Trong Nguyen, 2018. "The evolution of the gender test score gap through seventh grade: new insights from Australia using unconditional quantile regression and decomposition," IZA Journal of Labor Economics, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 7(1), pages 1-42, December.
    9. Peoples, James & Talley, Wayne K. & Thanabordeekij, Pithoon, 2006. "Shipping Deregulation's Wage Effect on Low and High Wage Dockworkers," Research in Transportation Economics, Elsevier, vol. 16(1), pages 219-249, January.
    10. Deborah A. Cobb-Clark & Sonja C. Kassenboehmer & Mathias G. Sinning, 2013. "Locus of Control and Savings," Ruhr Economic Papers 0455, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    11. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    12. Michel Lubrano & Abdoul Aziz Junior Ndoye, 2014. "Bayesian Unconditional Quantile Regression: An Analysis of Recent Expansions in Wage Structure and Earnings Inequality in the US 1992–2009," Scottish Journal of Political Economy, Scottish Economic Society, vol. 61(2), pages 129-153, May.
    13. Callaway, Brantly & Li, Tong & Oka, Tatsushi, 2018. "Quantile treatment effects in difference in differences models under dependence restrictions and with only two time periods," Journal of Econometrics, Elsevier, vol. 206(2), pages 395-413.
    14. Maria Börjesson & Jonas Eliasson & Mattias Lundberg, 2014. "Is CBA Ranking of Transport Investments Robust?," Journal of Transport Economics and Policy, University of Bath, vol. 48(2), pages 189-204, May.
    15. Vincenzo Carrieri & Francesco Principe & Michele Raitano, 2018. "What makes you ‘super-rich’? New evidence from an analysis of football players’ wages," Oxford Economic Papers, Oxford University Press, vol. 70(4), pages 950-973.
    16. Jean-Marc Fournier & Isabell Koske, 2012. "The determinants of earnings inequality: evidence from quantile regressions," OECD Journal: Economic Studies, OECD Publishing, vol. 2012(1), pages 7-36.
    17. Juan Jung & Enrique López-Bazo & Matteo Grazzi, 2017. "“Internet and enterprise productivity:evidence from Latin America”," AQR Working Papers 201705, University of Barcelona, Regional Quantitative Analysis Group, revised May 2017.
    18. Nguyen, Huu Manh & Bakry, Walid & Vuong, Thi Huong Giang, 2023. "COVID-19 pandemic and herd behavior: Evidence from a frontier market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 38(C).
    19. David E. Allen & Abhay K. Singh & Robert J. Powell & Michael McAleer & James Taylor & Lyn Thomas, 2013. "Return-Volatility Relationship: Insights from Linear and Non-Linear Quantile Regression," Tinbergen Institute Discussion Papers 13-020/III, Tinbergen Institute.
    20. T. Lakshmanasamy, 2022. "Money and Happiness in India: Is Relative Comparison Cardinal or Ordinal and Same for All?," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(4), pages 931-957, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:186:y:2024:i:c:s0965856424001903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.