IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v179y2024ics096585642300304x.html
   My bibliography  Save this article

Effect of the measurement period and spatial dependence on the accuracy of urban freight trip generation models

Author

Listed:
  • Middela, Mounisai Siddartha
  • Ramadurai, Gitakrishnan

Abstract

Despite recent advancements in the Freight Trip Generation (FTG) modelling literature, there is a lack of understanding on the effect of the choice of a regression model, measurement period (daily/weekly FTG), and spatial dependence on model fit and freight-related policies. This study addresses these research gaps by developing non-spatial and spatial autoregressive multiple linear regression and count models for daily and weekly Freight Trip Production (FTP) and Freight Trip Attraction (FTA). We model Freight Shipments (FS) as FTP and Freight Deliveries (FD) as FTA. The results show that the best model for daily and weekly FTP is the spatial Zero-Inflated Negative Binomial (ZINB) model. The best daily and weekly FTA model is the non-spatial Negative Binomial (NB) model. The findings indicate the presence of spatial dependence in the best FTP model, while it is absent in the best FTA model. The elasticity analysis shows that daily models may lead to bias and inaccurate prediction of policy impacts. The study recommends using count models that capture more FTG characteristics with a week as the measurement period and consider spatial dependence, if present.

Suggested Citation

  • Middela, Mounisai Siddartha & Ramadurai, Gitakrishnan, 2024. "Effect of the measurement period and spatial dependence on the accuracy of urban freight trip generation models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:transa:v:179:y:2024:i:c:s096585642300304x
    DOI: 10.1016/j.tra.2023.103884
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096585642300304X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103884?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanchez-Diaz, Ivan, 2020. "Assessing the magnitude of freight traffic generated by office deliveries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 279-289.
    2. Iding, Mirjam H.E. & Meester, Wilhelm J. & Tavasszy, Lóri, 2002. "Freight trip generation by firms," ERSA conference papers ersa02p453, European Regional Science Association.
    3. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    4. David Novak & Christopher Hodgdon & Feng Guo & Lisa Aultman-Hall, 2011. "Nationwide Freight Generation Models: A Spatial Regression Approach," Networks and Spatial Economics, Springer, vol. 11(1), pages 23-41, March.
    5. Wagner, Tina, 2010. "Regional traffic impacts of logistics-related land use," Transport Policy, Elsevier, vol. 17(4), pages 224-229, August.
    6. Lambert, Dayton M. & Brown, Jason P. & Florax, Raymond J.G.M., 2010. "A two-step estimator for a spatial lag model of counts: Theory, small sample performance and an application," Regional Science and Urban Economics, Elsevier, vol. 40(4), pages 241-252, July.
    7. Holguín-Veras, José & Ramirez-Rios, Diana & Pérez-Guzmán, Sofía, 2021. "Time-dependent patterns in freight trip generation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 423-444.
    8. James P. LeSage & R. Kelley Pace, 2014. "The Biggest Myth in Spatial Econometrics," Econometrics, MDPI, vol. 2(4), pages 1-33, December.
    9. Pani, Agnivesh & Sahu, Prasanta K. & Chandra, Aitichya & Sarkar, Ashoke K., 2019. "Assessing the extent of modifiable areal unit problem in modelling freight (trip) generation: Relationship between zone design and model estimation results," Journal of Transport Geography, Elsevier, vol. 80(C).
    10. Hatzenbühler, Jonas & Jenelius, Erik & Gidófalvi, Gyözö & Cats, Oded, 2023. "Modular vehicle routing for combined passenger and freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    11. Chandra Bhat & Ipek Sener, 2009. "A copula-based closed-form binary logit choice model for accommodating spatial correlation across observational units," Journal of Geographical Systems, Springer, vol. 11(3), pages 243-272, September.
    12. Julian Allen & Michael Browne & Tom Cherrett, 2012. "Survey Techniques in Urban Freight Transport Studies," Transport Reviews, Taylor & Francis Journals, vol. 32(3), pages 287-311, February.
    13. Krisztin, Tamás, 2018. "Semi-parametric spatial autoregressive models in freight generation modeling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 121-143.
    14. Ramirez-Rios, Diana G. & Kalahasthi, Lokesh Kumar & Holguín-Veras, José, 2023. "On-street parking for freight, services, and e-commerce traffic in US cities: A simulation model incorporating demand and duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    15. Bhat, Chandra R. & Pinjari, Abdul R. & Dubey, Subodh K. & Hamdi, Amin S., 2016. "On accommodating spatial interactions in a Generalized Heterogeneous Data Model (GHDM) of mixed types of dependent variables," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 240-263.
    16. Gonzalez-Feliu, Jesus & Sánchez-Díaz, Iván, 2019. "The influence of aggregation level and category construction on estimation quality for freight trip generation models," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 121(C), pages 134-148.
    17. Zhou, Bin (Brenda) & Kockelman, Kara M., 2009. "Predicting the distribution of households and employment: a seemingly unrelated regression model with two spatial processes," Journal of Transport Geography, Elsevier, vol. 17(5), pages 369-376.
    18. Iván Sánchez-Díaz & José Holguín-Veras & Xiaokun Wang, 2016. "An exploratory analysis of spatial effects on freight trip attraction," Transportation, Springer, vol. 43(1), pages 177-196, January.
    19. Daniel A. Badoe, 2007. "Forecasting Travel Demand with Alternatively Structured Models of Trip Frequency," Transportation Planning and Technology, Taylor & Francis Journals, vol. 30(5), pages 455-475, July.
    20. Leise Kelli de Oliveira & Gracielle Gonçalves Ferreira de Araújo & Bruno Vieira Bertoncini & Carlos David Pedrosa & Francisco Gildemir Ferreira da Silva, 2022. "Modelling Freight Trip Generation Based on Deliveries for Brazilian Municipalities," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    21. Cheah, Lynette & Mepparambath, Rakhi Manohar & Ricart Surribas, Gabriella Marie, 2021. "Freight trips generated at retail malls in dense urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 118-131.
    22. Iván Sánchez-Díaz & José Holguín-Veras & Xiaokun Wang, 2016. "An exploratory analysis of spatial effects on freight trip attraction," Transportation, Springer, vol. 43(1), pages 177-196, January.
    23. Mounisai Siddartha Middela & Gitakrishnan Ramadurai, 2021. "Incorporating spatial interactions in zero-inflated negative binomial models for freight trip generation," Transportation, Springer, vol. 48(5), pages 2335-2356, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mounisai Siddartha Middela & Gitakrishnan Ramadurai, 2021. "Incorporating spatial interactions in zero-inflated negative binomial models for freight trip generation," Transportation, Springer, vol. 48(5), pages 2335-2356, October.
    2. Reda, Abel Kebede & Tavasszy, Lori & Gebresenbet, Girma & Ljungberg, David, 2023. "Modelling the effect of spatial determinants on freight (trip) attraction: A spatially autoregressive geographically weighted regression approach," Research in Transportation Economics, Elsevier, vol. 99(C).
    3. Leise Kelli de Oliveira & Gracielle Gonçalves Ferreira de Araújo & Bruno Vieira Bertoncini & Carlos David Pedrosa & Francisco Gildemir Ferreira da Silva, 2022. "Modelling Freight Trip Generation Based on Deliveries for Brazilian Municipalities," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    4. Pani, Agnivesh & Mishra, Sabya & Sahu, Prasanta, 2022. "Developing multi-vehicle freight trip generation models quantifying the relationship between logistics outsourcing and insourcing decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    5. Dhulipala, Sowjanya & Patil, Gopal R., 2020. "Freight production of agricultural commodities in India using multiple linear regression and generalized additive modelling," Transport Policy, Elsevier, vol. 97(C), pages 245-258.
    6. Regal, Andrés & Gonzalez-Feliu, Jesús & Rodriguez, Michelle, 2023. "A spatio-functional logistics profile clustering analysis method for metropolitan areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    7. Sanchez-Diaz, Ivan, 2020. "Assessing the magnitude of freight traffic generated by office deliveries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 279-289.
    8. Pani, Agnivesh & Sahu, Prasanta K. & Chandra, Aitichya & Sarkar, Ashoke K., 2019. "Assessing the extent of modifiable areal unit problem in modelling freight (trip) generation: Relationship between zone design and model estimation results," Journal of Transport Geography, Elsevier, vol. 80(C).
    9. Cheah, Lynette & Mepparambath, Rakhi Manohar & Ricart Surribas, Gabriella Marie, 2021. "Freight trips generated at retail malls in dense urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 118-131.
    10. Sowjanya Dhulipala & Gopal R. Patil, 2023. "Regional freight generation and spatial interactions in developing regions using secondary data," Transportation, Springer, vol. 50(3), pages 773-810, June.
    11. Gonzalez-Calderon, Carlos A. & Moreno-Palacio, Diana Patricia & Posada-Henao, John Jairo & Quintero-Giraldo, Ricardo & Múnera, César Chavarría, 2022. "Service trip generation modeling in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    12. Middela, Mounisai Siddartha & Ramadurai, Gitakrishnan, 2024. "Modelling urban freight generation using linear regression and proportional odds logit models," Transport Policy, Elsevier, vol. 148(C), pages 145-153.
    13. Chandra, Aitichya & Sharath, M.N. & Pani, Agnivesh & Sahu, Prasanta K., 2021. "A multi-objective genetic algorithm approach to design optimal zoning systems for freight transportation planning," Journal of Transport Geography, Elsevier, vol. 92(C).
    14. Oliveira, Leise Kelli de & Lopes, Gabriela Pereira & Oliveira, Renata Lúcia Magalhães de & Bracarense, Lílian dos Santos Fontes Pereira & Pitombo, Cira Souza, 2022. "An investigation of contributing factors for warehouse location and the relationship between local attributes and explanatory variables of Warehouse Freight Trip Generation Model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 206-219.
    15. Pani, Agnivesh & Sahu, Prasanta K. & Tavasszy, Lóránt & Mishra, Sabya, 2023. "Freight activity-travel pattern generation (FAPG) as an enhancement of freight (trip) generation modelling: Methodology and case study," Transport Policy, Elsevier, vol. 144(C), pages 34-48.
    16. Rivera-Gonzalez, Carlos & Amaral, Julia C., 2024. "Assessment of freight accessibility in New York City: A spatial-temporal approach," Journal of Transport Geography, Elsevier, vol. 114(C).
    17. Krisztin, Tamás, 2018. "Semi-parametric spatial autoregressive models in freight generation modeling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 121-143.
    18. Márquez, Luis & Cantillo, Víctor & Paternina-Arboleda, Carlos D., 2024. "Temporal accessibility and freight generation of agricultural products: An empirical study in Colombia," Research in Transportation Economics, Elsevier, vol. 104(C).
    19. Agnivesh Pani & Prasanta K. Sahu & Furqan A. Bhat, 2021. "Assessing the Spatial Transferability of Freight (Trip) Generation Models across and within States of India: Empirical Evidence and Implications for Benefit Transfer," Networks and Spatial Economics, Springer, vol. 21(2), pages 465-493, June.
    20. McLeod, Sam & Schapper, Jake H.M. & Curtis, Carey & Graham, Giles, 2019. "Conceptualizing freight generation for transport and land use planning: A review and synthesis of the literature," Transport Policy, Elsevier, vol. 74(C), pages 24-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:179:y:2024:i:c:s096585642300304x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.