IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v97y2020icp245-258.html
   My bibliography  Save this article

Freight production of agricultural commodities in India using multiple linear regression and generalized additive modelling

Author

Listed:
  • Dhulipala, Sowjanya
  • Patil, Gopal R.

Abstract

Freight transportation has a key role in the economic competitiveness of any nation. India is one of the fastest-growing nations in the world; its agricultural sector plays a vital role in contributing to the country's economy. In this paper, the freight production in the agricultural sector of India is modelled using multiple linear regression (MLR) and generalized additive modelling (GAM) approaches. Using district-level data, factors influencing agricultural freight production are identified and the relationship between them is modelled. The study considered 210 districts of eight states covering South India and parts of Central and Western India. Population, employment in the agricultural sector, gross cropped area, and gross irrigated area are identified as influential factors. GAM approach is a flexible method which can predict non-linear responses for the given predictor variables by allowing non-linear functions for each of them while maintaining additivity. The applicability of GAM in modelling freight production while tackling the non-linear effects of predictor variables on freight production is investigated and encouraging results are achieved. The results revealed that both MLR and GAM models have good modelling efficiency, however, the GAM model outperformed the MLR model in both fitting and predicting. The study can be used in evaluating the commodity movements and transportation demand which in turn will help in decision-making for the provision of freight transportation facilities and policymaking.

Suggested Citation

  • Dhulipala, Sowjanya & Patil, Gopal R., 2020. "Freight production of agricultural commodities in India using multiple linear regression and generalized additive modelling," Transport Policy, Elsevier, vol. 97(C), pages 245-258.
  • Handle: RePEc:eee:trapol:v:97:y:2020:i:c:p:245-258
    DOI: 10.1016/j.tranpol.2020.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X19306742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2020.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iding, Mirjam H.E. & Meester, Wilhelm J. & Tavasszy, Lóri, 2002. "Freight trip generation by firms," ERSA conference papers ersa02p453, European Regional Science Association.
    2. Joseph Chow & Choon Yang & Amelia Regan, 2010. "State-of-the art of freight forecast modeling: lessons learned and the road ahead," Transportation, Springer, vol. 37(6), pages 1011-1030, November.
    3. David Novak & Christopher Hodgdon & Feng Guo & Lisa Aultman-Hall, 2011. "Nationwide Freight Generation Models: A Spatial Regression Approach," Networks and Spatial Economics, Springer, vol. 11(1), pages 23-41, March.
    4. Iván Sánchez-Díaz & José Holguín-Veras & Xiaokun Wang, 2016. "An exploratory analysis of spatial effects on freight trip attraction," Transportation, Springer, vol. 43(1), pages 177-196, January.
    5. World Bank, 2005. "India : Road Transport Service Efficiency Study," World Bank Publications - Reports 8356, The World Bank Group.
    6. Garrido, Rodrigo A., 2000. "Spatial interaction between the truck flows through the Mexico-Texas border," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(1), pages 23-33, January.
    7. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    8. Iván Sánchez-Díaz & José Holguín-Veras & Xiaokun Wang, 2016. "An exploratory analysis of spatial effects on freight trip attraction," Transportation, Springer, vol. 43(1), pages 177-196, January.
    9. Pani, Agnivesh & Sahu, Prasanta K. & Patil, Gopal R. & Sarkar, Ashoke K., 2018. "Modelling urban freight generation: A case study of seven cities in Kerala, India," Transport Policy, Elsevier, vol. 69(C), pages 49-64.
    10. Krisztin, Tamás, 2018. "Semi-parametric spatial autoregressive models in freight generation modeling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 121-143.
    11. Garrido, Rodrigo A. & Mahmassani, Hani S., 2000. "Forecasting freight transportation demand with the space-time multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 403-418, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Middela, Mounisai Siddartha & Ramadurai, Gitakrishnan, 2024. "Modelling urban freight generation using linear regression and proportional odds logit models," Transport Policy, Elsevier, vol. 148(C), pages 145-153.
    2. Sowjanya Dhulipala & Gopal R. Patil, 2021. "Identification of freight generating industry complexes: A descriptive spatial analysis," Growth and Change, Wiley Blackwell, vol. 52(4), pages 2680-2712, December.
    3. Ramirez-Rios, Diana G. & Kalahasthi, Lokesh Kumar & Holguín-Veras, José, 2023. "On-street parking for freight, services, and e-commerce traffic in US cities: A simulation model incorporating demand and duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    4. Zhang, Zhaolin & Zhai, Guocong & Xie, Kun & Xiao, Feng, 2022. "Exploring the nonlinear effects of ridesharing on public transit usage: A case study of San Diego," Journal of Transport Geography, Elsevier, vol. 104(C).
    5. Sowjanya Dhulipala & Gopal R. Patil, 2023. "Regional freight generation and spatial interactions in developing regions using secondary data," Transportation, Springer, vol. 50(3), pages 773-810, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reda, Abel Kebede & Tavasszy, Lori & Gebresenbet, Girma & Ljungberg, David, 2023. "Modelling the effect of spatial determinants on freight (trip) attraction: A spatially autoregressive geographically weighted regression approach," Research in Transportation Economics, Elsevier, vol. 99(C).
    2. Middela, Mounisai Siddartha & Ramadurai, Gitakrishnan, 2024. "Effect of the measurement period and spatial dependence on the accuracy of urban freight trip generation models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    3. Chandra, Aitichya & Sharath, M.N. & Pani, Agnivesh & Sahu, Prasanta K., 2021. "A multi-objective genetic algorithm approach to design optimal zoning systems for freight transportation planning," Journal of Transport Geography, Elsevier, vol. 92(C).
    4. Pani, Agnivesh & Sahu, Prasanta K. & Chandra, Aitichya & Sarkar, Ashoke K., 2019. "Assessing the extent of modifiable areal unit problem in modelling freight (trip) generation: Relationship between zone design and model estimation results," Journal of Transport Geography, Elsevier, vol. 80(C).
    5. Pani, Agnivesh & Mishra, Sabya & Sahu, Prasanta, 2022. "Developing multi-vehicle freight trip generation models quantifying the relationship between logistics outsourcing and insourcing decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    6. Krisztin, Tamás, 2018. "Semi-parametric spatial autoregressive models in freight generation modeling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 121-143.
    7. Agnivesh Pani & Prasanta K. Sahu & Furqan A. Bhat, 2021. "Assessing the Spatial Transferability of Freight (Trip) Generation Models across and within States of India: Empirical Evidence and Implications for Benefit Transfer," Networks and Spatial Economics, Springer, vol. 21(2), pages 465-493, June.
    8. Mounisai Siddartha Middela & Gitakrishnan Ramadurai, 2021. "Incorporating spatial interactions in zero-inflated negative binomial models for freight trip generation," Transportation, Springer, vol. 48(5), pages 2335-2356, October.
    9. Sowjanya Dhulipala & Gopal R. Patil, 2023. "Regional freight generation and spatial interactions in developing regions using secondary data," Transportation, Springer, vol. 50(3), pages 773-810, June.
    10. Pani, Agnivesh & Sahu, Prasanta K. & Tavasszy, Lóránt & Mishra, Sabya, 2023. "Freight activity-travel pattern generation (FAPG) as an enhancement of freight (trip) generation modelling: Methodology and case study," Transport Policy, Elsevier, vol. 144(C), pages 34-48.
    11. Cheah, Lynette & Mepparambath, Rakhi Manohar & Ricart Surribas, Gabriella Marie, 2021. "Freight trips generated at retail malls in dense urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 118-131.
    12. Rivera-Gonzalez, Carlos & Amaral, Julia C., 2024. "Assessment of freight accessibility in New York City: A spatial-temporal approach," Journal of Transport Geography, Elsevier, vol. 114(C).
    13. Gonzalez-Calderon, Carlos A. & Moreno-Palacio, Diana Patricia & Posada-Henao, John Jairo & Quintero-Giraldo, Ricardo & Múnera, César Chavarría, 2022. "Service trip generation modeling in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    14. Iván Sánchez-Díaz & José Holguín-Veras & Xiaokun Wang, 2016. "An exploratory analysis of spatial effects on freight trip attraction," Transportation, Springer, vol. 43(1), pages 177-196, January.
    15. Holguín-Veras, José & Ramirez-Rios, Diana & Pérez-Guzmán, Sofía, 2021. "Time-dependent patterns in freight trip generation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 423-444.
    16. Sanchez-Diaz, Ivan, 2020. "Assessing the magnitude of freight traffic generated by office deliveries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 279-289.
    17. Iván Sánchez-Díaz & José Holguín-Veras & Xiaokun Wang, 2016. "An exploratory analysis of spatial effects on freight trip attraction," Transportation, Springer, vol. 43(1), pages 177-196, January.
    18. Sánchez-Díaz, Iván, 2017. "Modeling urban freight generation: A study of commercial establishments’ freight needs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 3-17.
    19. Hensher, David A. & Teye, Collins, 2019. "Commodity interaction in freight movement models for New South Wales," Journal of Transport Geography, Elsevier, vol. 80(C).
    20. Sonagnon Hounwanou & Natacha Gondran & Jesus Gonzalez-Feliu, 2016. "Retail location and freight flow generation: proposition of a method estimating upstream and downstream movements generated by city center stores and peripheral shopping centers," Post-Print hal-01357008, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:97:y:2020:i:c:p:245-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.