IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v188y2024ics1366554524002485.html
   My bibliography  Save this article

Mobility heterogeneity of urban freight areas: Geospatial evidence from shared logistics dynamics

Author

Listed:
  • Yu, Zidong
  • Wang, Haotian
  • Liu, Xintao

Abstract

Amid rising mobility services in cities, the logistics sector plays a crucial role in envisioning daily services for local neighborhoods. Previous research has primarily identified key freight areas (KFAs) in small-scale regions using traditional census and travel survey data. However, differing from KFAs, other areas with distinct freight patterns remain largely unexamined, and there is a lack of comprehensive indicators to evaluate the travel behaviors of large-scale freight vehicles. This study introduces a data-driven geospatial framework to characterize and understand the patterns exhibited by different freight areas through freight dynamics data collected in cities. To analyze key aspects of freight mobility within spatial units, a set of areal indicators is developed using GPS trajectories of shared freight vehicles in Hong Kong. Descriptive statistics illustrate the inherent differences across various areas and their spatial distributions. A hierarchical clustering approach groups all areas based on proposed indicators, providing a quantitative evaluation of collective spatial patterns. The analysis also explores the non-linear relationships between different categories of freight activities and the local built environments and socioeconomic conditions. The results suggest a strong spatial heterogeneity in the areal mobility profile of Hong Kong. Loading and unloading behaviors are frequently observed in districts such as Eastern Kowloon, Kwai Chung, and the Airport, highlighting prevalent freight trip origins and destinations. In contrast, areas with high transit times are mostly found in suburban regions, particularly on the periphery. This study provides essential insights for area-based planning and management of urban freight activities, with relevant practical implications.

Suggested Citation

  • Yu, Zidong & Wang, Haotian & Liu, Xintao, 2024. "Mobility heterogeneity of urban freight areas: Geospatial evidence from shared logistics dynamics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:transe:v:188:y:2024:i:c:s1366554524002485
    DOI: 10.1016/j.tre.2024.103657
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524002485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103657?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mathieu Gardrat, 2021. "Urban growth and freight transport: From sprawl to distension," Post-Print halshs-03193075, HAL.
    2. Yu, Zidong & Zhu, Xiaolin & Liu, Xintao, 2022. "Characterizing metro stations via urban function: Thematic evidence from transit-oriented development (TOD) in Hong Kong," Journal of Transport Geography, Elsevier, vol. 99(C).
    3. Aljohani, Khalid & Thompson, Russell G., 2016. "Impacts of logistics sprawl on the urban environment and logistics: Taxonomy and review of literature," Journal of Transport Geography, Elsevier, vol. 57(C), pages 255-263.
    4. Amir Samimi & Kazuya Kawamura & Abolfazl Mohammadian, 2011. "A behavioral analysis of freight mode choice decisions," Transportation Planning and Technology, Taylor & Francis Journals, vol. 34(8), pages 857-869, June.
    5. Amaya, Johanna & Delgado-Lindeman, Maira & Arellana, Julian & Allen, Jaime, 2021. "Urban freight logistics: What do citizens perceive?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    6. van den Heuvel, Frank P. & Rivera, Liliana & van Donselaar, Karel H. & de Jong, Ad & Sheffi, Yossi & de Langen, Peter W. & Fransoo, Jan C., 2014. "Relationship between freight accessibility and logistics employment in US counties," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 91-105.
    7. Fan Wu & Wei Ma, 2022. "Clustering Analysis of the Spatio-Temporal On-Street Parking Occupancy Data: A Case Study in Hong Kong," Sustainability, MDPI, vol. 14(13), pages 1-25, June.
    8. Zhen, Lu & Baldacci, Roberto & Tan, Zheyi & Wang, Shuaian & Lyu, Junyan, 2022. "Scheduling heterogeneous delivery tasks on a mixed logistics platform," European Journal of Operational Research, Elsevier, vol. 298(2), pages 680-698.
    9. David Novak & Christopher Hodgdon & Feng Guo & Lisa Aultman-Hall, 2011. "Nationwide Freight Generation Models: A Spatial Regression Approach," Networks and Spatial Economics, Springer, vol. 11(1), pages 23-41, March.
    10. Iván Sánchez-Díaz & José Holguín-Veras & Xiaokun Wang, 2016. "An exploratory analysis of spatial effects on freight trip attraction," Transportation, Springer, vol. 43(1), pages 177-196, January.
    11. Luca Pappalardo & Filippo Simini & Salvatore Rinzivillo & Dino Pedreschi & Fosca Giannotti & Albert-László Barabási, 2015. "Returners and explorers dichotomy in human mobility," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    12. Jose Holguin-Veras & Diana Ramirez-Rios & Juvena Ng & Jeffrey Wojtowicz & Daniel Haake & Catherine T. Lawson & Oriana Calderón & Benjamin Caron & Cara Wang, 2021. "Freight-Efficient Land Uses: Methodology, Strategies, and Tools," Sustainability, MDPI, vol. 13(6), pages 1-24, March.
    13. Cherrett, Tom & Allen, Julian & McLeod, Fraser & Maynard, Sarah & Hickford, Adrian & Browne, Mike, 2012. "Understanding urban freight activity – key issues for freight planning," Journal of Transport Geography, Elsevier, vol. 24(C), pages 22-32.
    14. Boarnet, Marlon G. & Hong, Andy & Santiago-Bartolomei, Raul, 2017. "Urban spatial structure, employment subcenters, and freight travel," Journal of Transport Geography, Elsevier, vol. 60(C), pages 267-276.
    15. Iván Sánchez-Díaz & José Holguín-Veras & Xiaokun Wang, 2016. "An exploratory analysis of spatial effects on freight trip attraction," Transportation, Springer, vol. 43(1), pages 177-196, January.
    16. Christian Ambrosini & Jean-Louis Routhier, 2004. "Objectives, Methods and Results of Surveys Carried out in the Field of Urban Freight Transport: An International Comparison," Post-Print halshs-00068527, HAL.
    17. Zhen, Lu & Gao, Jiajing & Tan, Zheyi & Laporte, Gilbert & Baldacci, Roberto, 2023. "Territorial design for customers with demand frequency," European Journal of Operational Research, Elsevier, vol. 309(1), pages 82-101.
    18. Gardrat, Mathieu, 2021. "Urban growth and freight transport: From sprawl to distension," Journal of Transport Geography, Elsevier, vol. 91(C).
    19. Yu, Zidong & Wang, Haotian & Liu, Xintao, 2024. "Unraveling intra-urban freight parking patterns: A data-driven geospatial study of shared logistics sector in Hong Kong," Journal of Transport Geography, Elsevier, vol. 117(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnivesh Pani & Prasanta K. Sahu & Furqan A. Bhat, 2021. "Assessing the Spatial Transferability of Freight (Trip) Generation Models across and within States of India: Empirical Evidence and Implications for Benefit Transfer," Networks and Spatial Economics, Springer, vol. 21(2), pages 465-493, June.
    2. Chandra, Aitichya & Sharath, M.N. & Pani, Agnivesh & Sahu, Prasanta K., 2021. "A multi-objective genetic algorithm approach to design optimal zoning systems for freight transportation planning," Journal of Transport Geography, Elsevier, vol. 92(C).
    3. Regal, Andrés & Gonzalez-Feliu, Jesús & Rodriguez, Michelle, 2023. "A spatio-functional logistics profile clustering analysis method for metropolitan areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    4. Rivera-Gonzalez, Carlos & Amaral, Julia C., 2024. "Assessment of freight accessibility in New York City: A spatial-temporal approach," Journal of Transport Geography, Elsevier, vol. 114(C).
    5. Pani, Agnivesh & Mishra, Sabya & Sahu, Prasanta, 2022. "Developing multi-vehicle freight trip generation models quantifying the relationship between logistics outsourcing and insourcing decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    6. Krisztin, Tamás, 2018. "Semi-parametric spatial autoregressive models in freight generation modeling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 121-143.
    7. Trent, Nadia M. & Joubert, Johan W., 2022. "Logistics sprawl and the change in freight transport activity: A comparison of three measurement methodologies," Journal of Transport Geography, Elsevier, vol. 101(C).
    8. Middela, Mounisai Siddartha & Ramadurai, Gitakrishnan, 2024. "Effect of the measurement period and spatial dependence on the accuracy of urban freight trip generation models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    9. Theodore Tsekeris, 2022. "Freight Transport Cost and Urban Sprawl across EU Regions," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    10. Reda, Abel Kebede & Tavasszy, Lori & Gebresenbet, Girma & Ljungberg, David, 2023. "Modelling the effect of spatial determinants on freight (trip) attraction: A spatially autoregressive geographically weighted regression approach," Research in Transportation Economics, Elsevier, vol. 99(C).
    11. Chen, Yu & Lu, Yuqi & Jin, Cheng, 2024. "Spatiotemporal differentiation calendar for car and truck flow on expressways: A case study of Jiangsu, China," Journal of Transport Geography, Elsevier, vol. 116(C).
    12. Dhulipala, Sowjanya & Patil, Gopal R., 2020. "Freight production of agricultural commodities in India using multiple linear regression and generalized additive modelling," Transport Policy, Elsevier, vol. 97(C), pages 245-258.
    13. Mounisai Siddartha Middela & Gitakrishnan Ramadurai, 2021. "Incorporating spatial interactions in zero-inflated negative binomial models for freight trip generation," Transportation, Springer, vol. 48(5), pages 2335-2356, October.
    14. Oliveira, Leise Kelli de & Lopes, Gabriela Pereira & Oliveira, Renata Lúcia Magalhães de & Bracarense, Lílian dos Santos Fontes Pereira & Pitombo, Cira Souza, 2022. "An investigation of contributing factors for warehouse location and the relationship between local attributes and explanatory variables of Warehouse Freight Trip Generation Model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 206-219.
    15. Pani, Agnivesh & Sahu, Prasanta K. & Chandra, Aitichya & Sarkar, Ashoke K., 2019. "Assessing the extent of modifiable areal unit problem in modelling freight (trip) generation: Relationship between zone design and model estimation results," Journal of Transport Geography, Elsevier, vol. 80(C).
    16. Cheah, Lynette & Mepparambath, Rakhi Manohar & Ricart Surribas, Gabriella Marie, 2021. "Freight trips generated at retail malls in dense urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 118-131.
    17. Gardrat, Mathieu, 2021. "Urban growth and freight transport: From sprawl to distension," Journal of Transport Geography, Elsevier, vol. 91(C).
    18. Sonagnon Hounwanou & Natacha Gondran & Jesus Gonzalez-Feliu, 2016. "Retail location and freight flow generation: proposition of a method estimating upstream and downstream movements generated by city center stores and peripheral shopping centers," Post-Print hal-01357008, HAL.
    19. Gonzalez-Feliu, Jesus & Sánchez-Díaz, Iván, 2019. "The influence of aggregation level and category construction on estimation quality for freight trip generation models," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 121(C), pages 134-148.
    20. Yang, Zhiwei & Chen, Xiaohong & Pan, Ruixu & Yuan, Quan, 2022. "Exploring location factors of logistics facilities from a spatiotemporal perspective: A case study from Shanghai," Journal of Transport Geography, Elsevier, vol. 100(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:188:y:2024:i:c:s1366554524002485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.