IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v102y2017icp3-17.html
   My bibliography  Save this article

Modeling urban freight generation: A study of commercial establishments’ freight needs

Author

Listed:
  • Sánchez-Díaz, Iván

Abstract

Increasing urbanization, and the environmental and liveability impacts associated with urban activity, have directed attention to the need for sustainable cities. Achieving sustainable urban development requires including freight systems in strategic urban development plans. In this context, joint efforts involving academia and public- and private sector to collect the right data and develop suitable models, can contribute toward a better understanding of establishments’ freight needs, the quantification of freight’s traffic impacts and the development of appropriate methods to support decision making and strategic plans. This paper studies urban commercial establishments’ freight needs and impacts on traffic using data collected from establishments in the City of Gothenburg (Sweden). The data cover different zones of the city and include commercial sectors found typically in urban cores (e.g., retailers, food services, health care, public sector offices and education). The paper introduces a set of statistical models—developed based on regression analyses and discrete choice models—to estimate the number of freight trips produced and attracted per week, and the attraction of weight and volumes of freight. In addition to shed light on the factors determining establishments’ freight- and freight trips generation, the models are designed with the purpose of assisting planning and policy design efforts, thus the explanatory variables are selected based on suitability and availability. The results show that retailers of perishable goods have the highest freight trip generation per establishment, followed by public sector offices and education establishments, retailers of non-perishable goods and restaurants. The results also reveal a heterogeneity between sectors, and a differential business size effect across commercial sectors.

Suggested Citation

  • Sánchez-Díaz, Iván, 2017. "Modeling urban freight generation: A study of commercial establishments’ freight needs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 3-17.
  • Handle: RePEc:eee:transa:v:102:y:2017:i:c:p:3-17
    DOI: 10.1016/j.tra.2016.06.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415302196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2016.06.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Louis Routhier & Florence Toilier, 2007. "FRETURB V3, A Policy Oriented Software of Modelling Urban Goods Movement," Post-Print halshs-00963847, HAL.
    2. Freedman, David A., 2006. "On The So-Called "Huber-Sandwich Estimator" and "Robust Standard Errors"," The American Statistician, American Statistical Association, vol. 60, pages 299-302, November.
    3. Holguín-Veras, José & Wang, Xiaokun (Cara) & Sánchez-Díaz, Iván & Campbell, Shama & Hodge, Stacey D. & Jaller, Miguel & Wojtowicz, Jeffrey, 2017. "Fostering unassisted off-hour deliveries: The role of incentives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 172-187.
    4. Iván Sánchez-Díaz & José Holguín-Veras & Xiaokun Wang, 2016. "An exploratory analysis of spatial effects on freight trip attraction," Transportation, Springer, vol. 43(1), pages 177-196, January.
    5. Iván Sánchez-Díaz & José Holguín-Veras & Xiaokun Wang, 2016. "An exploratory analysis of spatial effects on freight trip attraction," Transportation, Springer, vol. 43(1), pages 177-196, January.
    6. Iding, Mirjam H.E. & Meester, Wilhelm J. & Tavasszy, Lóri, 2002. "Freight trip generation by firms," ERSA conference papers ersa02p453, European Regional Science Association.
    7. Thijs Knaap & Jan Oosterhaven & Lóri Tavasszy, 2001. "On the development of raem: The dutch spatial general equilibrium model and it's first application to a new railway link," ERSA conference papers ersa01p171, European Regional Science Association.
    8. Federico Belotti & Partha Deb & Willard G. Manning & Edward C. Norton, 2015. "twopm: Two-part models," Stata Journal, StataCorp LP, vol. 15(1), pages 3-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnivesh Pani & Prasanta K. Sahu & Furqan A. Bhat, 2021. "Assessing the Spatial Transferability of Freight (Trip) Generation Models across and within States of India: Empirical Evidence and Implications for Benefit Transfer," Networks and Spatial Economics, Springer, vol. 21(2), pages 465-493, June.
    2. Vasco Silva & António Amaral & Tânia Fontes, 2023. "Sustainable Urban Last-Mile Logistics: A Systematic Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    3. Pani, Agnivesh & Mishra, Sabya & Sahu, Prasanta, 2022. "Developing multi-vehicle freight trip generation models quantifying the relationship between logistics outsourcing and insourcing decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    4. Pani, Agnivesh & Sahu, Prasanta K., 2019. "Planning, designing and conducting establishment-based freight surveys: A synthesis of the literature, case-study examples and recommendations for best practices in future surveys," Transport Policy, Elsevier, vol. 78(C), pages 58-75.
    5. Pani, Agnivesh & Sahu, Prasanta K. & Patil, Gopal R. & Sarkar, Ashoke K., 2018. "Modelling urban freight generation: A case study of seven cities in Kerala, India," Transport Policy, Elsevier, vol. 69(C), pages 49-64.
    6. Pani, Agnivesh & Sahu, Prasanta K. & Chandra, Aitichya & Sarkar, Ashoke K., 2019. "Assessing the extent of modifiable areal unit problem in modelling freight (trip) generation: Relationship between zone design and model estimation results," Journal of Transport Geography, Elsevier, vol. 80(C).
    7. Pani, Agnivesh & Sahu, Prasanta K., 2022. "Modelling non-response in establishment-based freight surveys: A sampling tool for statewide freight data collection in middle-income countries," Transport Policy, Elsevier, vol. 124(C), pages 128-138.
    8. Prasanta K. Sahu & Agnivesh Pani, 2020. "Freight generation and geographical effects: modelling freight needs of establishments in developing economies and analyzing their geographical disparities," Transportation, Springer, vol. 47(6), pages 2873-2902, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheah, Lynette & Mepparambath, Rakhi Manohar & Ricart Surribas, Gabriella Marie, 2021. "Freight trips generated at retail malls in dense urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 118-131.
    2. Rivera-Gonzalez, Carlos & Amaral, Julia C., 2024. "Assessment of freight accessibility in New York City: A spatial-temporal approach," Journal of Transport Geography, Elsevier, vol. 114(C).
    3. Sonagnon Hounwanou & Natacha Gondran & Jesus Gonzalez-Feliu, 2016. "Retail location and freight flow generation: proposition of a method estimating upstream and downstream movements generated by city center stores and peripheral shopping centers," Post-Print hal-01357008, HAL.
    4. Pani, Agnivesh & Mishra, Sabya & Sahu, Prasanta, 2022. "Developing multi-vehicle freight trip generation models quantifying the relationship between logistics outsourcing and insourcing decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    5. Gonzalez-Feliu, Jesus & Sánchez-Díaz, Iván, 2019. "The influence of aggregation level and category construction on estimation quality for freight trip generation models," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 121(C), pages 134-148.
    6. Middela, Mounisai Siddartha & Ramadurai, Gitakrishnan, 2024. "Effect of the measurement period and spatial dependence on the accuracy of urban freight trip generation models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    7. Reda, Abel Kebede & Tavasszy, Lori & Gebresenbet, Girma & Ljungberg, David, 2023. "Modelling the effect of spatial determinants on freight (trip) attraction: A spatially autoregressive geographically weighted regression approach," Research in Transportation Economics, Elsevier, vol. 99(C).
    8. Dhulipala, Sowjanya & Patil, Gopal R., 2020. "Freight production of agricultural commodities in India using multiple linear regression and generalized additive modelling," Transport Policy, Elsevier, vol. 97(C), pages 245-258.
    9. Sanchez-Diaz, Ivan, 2020. "Assessing the magnitude of freight traffic generated by office deliveries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 279-289.
    10. Gardrat, Mathieu, 2021. "Urban growth and freight transport: From sprawl to distension," Journal of Transport Geography, Elsevier, vol. 91(C).
    11. Krisztin, Tamás, 2018. "Semi-parametric spatial autoregressive models in freight generation modeling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 121-143.
    12. Leise Kelli de Oliveira & Gracielle Gonçalves Ferreira de Araújo & Bruno Vieira Bertoncini & Carlos David Pedrosa & Francisco Gildemir Ferreira da Silva, 2022. "Modelling Freight Trip Generation Based on Deliveries for Brazilian Municipalities," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    13. Agnivesh Pani & Prasanta K. Sahu & Furqan A. Bhat, 2021. "Assessing the Spatial Transferability of Freight (Trip) Generation Models across and within States of India: Empirical Evidence and Implications for Benefit Transfer," Networks and Spatial Economics, Springer, vol. 21(2), pages 465-493, June.
    14. Ramirez-Rios, Diana G. & Kalahasthi, Lokesh Kumar & Holguín-Veras, José, 2023. "On-street parking for freight, services, and e-commerce traffic in US cities: A simulation model incorporating demand and duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    15. Chen, Yu & Lu, Yuqi & Jin, Cheng, 2024. "Spatiotemporal differentiation calendar for car and truck flow on expressways: A case study of Jiangsu, China," Journal of Transport Geography, Elsevier, vol. 116(C).
    16. Mounisai Siddartha Middela & Gitakrishnan Ramadurai, 2021. "Incorporating spatial interactions in zero-inflated negative binomial models for freight trip generation," Transportation, Springer, vol. 48(5), pages 2335-2356, October.
    17. Gonzalez-Calderon, Carlos A. & Moreno-Palacio, Diana Patricia & Posada-Henao, John Jairo & Quintero-Giraldo, Ricardo & Múnera, César Chavarría, 2022. "Service trip generation modeling in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    18. Pani, Agnivesh & Sahu, Prasanta K. & Patil, Gopal R. & Sarkar, Ashoke K., 2018. "Modelling urban freight generation: A case study of seven cities in Kerala, India," Transport Policy, Elsevier, vol. 69(C), pages 49-64.
    19. Holguín-Veras, José & Ramirez-Rios, Diana & Pérez-Guzmán, Sofía, 2021. "Time-dependent patterns in freight trip generation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 423-444.
    20. Chandra, Aitichya & Sharath, M.N. & Pani, Agnivesh & Sahu, Prasanta K., 2021. "A multi-objective genetic algorithm approach to design optimal zoning systems for freight transportation planning," Journal of Transport Geography, Elsevier, vol. 92(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:102:y:2017:i:c:p:3-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.