IDEAS home Printed from https://ideas.repec.org/a/kap/regeco/v49y2016i3d10.1007_s11149-016-9297-3.html
   My bibliography  Save this article

On the optimal design of demand response policies

Author

Listed:
  • David P. Brown

    (University of Alberta)

  • David E. M. Sappington

    (University of Florida)

Abstract

We characterize the optimal regulatory policy to promote efficient demand response (DR) in the electricity sector. DR arises when consumers reduce their purchases of electricity below historic levels at times when the utility’s marginal cost of supplying electricity is relatively high. The US Federal Energy Regulatory Commission (FERC) advocates compensation for DR that reflects the utility’s marginal cost. We show that the optimal policy often provides less generous compensation, and demonstrate that implementation of the FERC’s policy can reduce welfare well below the level secured by the optimal DR policy.

Suggested Citation

  • David P. Brown & David E. M. Sappington, 2016. "On the optimal design of demand response policies," Journal of Regulatory Economics, Springer, vol. 49(3), pages 265-291, June.
  • Handle: RePEc:kap:regeco:v:49:y:2016:i:3:d:10.1007_s11149-016-9297-3
    DOI: 10.1007/s11149-016-9297-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11149-016-9297-3
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11149-016-9297-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. David P. Brown & David E. M. Sappington, 2016. "On the optimal design of demand response policies," Journal of Regulatory Economics, Springer, vol. 49(3), pages 265-291, June.
    2. Paul Joskow & Jean Tirole, 2007. "Reliability and competitive electricity markets," RAND Journal of Economics, RAND Corporation, vol. 38(1), pages 60-84, March.
    3. Severin Borenstein & Stephen Holland, 2005. "On the Efficiency of Competitive Electricity Markets with Time-Invariant Retail Prices," RAND Journal of Economics, The RAND Corporation, vol. 36(3), pages 469-493, Autumn.
    4. Natalia Fabra & Mar Reguant, 2014. "Pass-Through of Emissions Costs in Electricity Markets," American Economic Review, American Economic Association, vol. 104(9), pages 2872-2899, September.
    5. Espey, James A. & Espey, Molly, 2004. "Turning on the Lights: A Meta-Analysis of Residential Electricity Demand Elasticities," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 36(1), pages 1-17, April.
    6. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    7. Thomas Taylor & Peter Schwarz & James Cochell, 2005. "24/7 Hourly Response to Electricity Real-Time Pricing with up to Eight Summers of Experience," Journal of Regulatory Economics, Springer, vol. 27(3), pages 235-262, January.
    8. Chao, Hung-po, 2010. "Price-Responsive Demand Management for a Smart Grid World," The Electricity Journal, Elsevier, vol. 23(1), pages 7-20, January.
    9. Hung-po Chao, 2011. "Demand response in wholesale electricity markets: the choice of customer baseline," Journal of Regulatory Economics, Springer, vol. 39(1), pages 68-88, February.
    10. Bushnell, James & Hobbs, Benjamin F. & Wolak, Frank A., 2009. "When It Comes to Demand Response, Is FERC Its Own Worst Enemy?," The Electricity Journal, Elsevier, vol. 22(8), pages 9-18, October.
    11. James Bushnell, 2007. "Oligopoly equilibria in electricity contract markets," Journal of Regulatory Economics, Springer, vol. 32(3), pages 225-245, December.
    12. Paul, Anthony & Myers, Erica & Palmer, Karen, 2009. "A Partial Adjustment Model of U.S. Electricity Demand by Region, Season, and Sector," RFF Working Paper Series dp-08-50, Resources for the Future.
    13. Baumol, William J & Bradford, David F, 1970. "Optimal Departures from Marginal Cost Pricing," American Economic Review, American Economic Association, vol. 60(3), pages 265-283, June.
    14. Narayan, Paresh Kumar & Smyth, Russell, 2005. "The residential demand for electricity in Australia: an application of the bounds testing approach to cointegration," Energy Policy, Elsevier, vol. 33(4), pages 467-474, March.
    15. Crew, Michael A & Fernando, Chitru S & Kleindorfer, Paul R, 1995. "The Theory of Peak-Load Pricing: A Survey," Journal of Regulatory Economics, Springer, vol. 8(3), pages 215-248, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David P. Brown & David E. M. Sappington, 2017. "Optimal policies to promote efficient distributed generation of electricity," Journal of Regulatory Economics, Springer, vol. 52(2), pages 159-188, October.
    2. Tooraj Jamasb and Manuel Llorca, 2019. "Energy Systems Integration: Economics of a New Paradigm," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    3. David P. Brown & David E. M. Sappington, 2016. "On the optimal design of demand response policies," Journal of Regulatory Economics, Springer, vol. 49(3), pages 265-291, June.
    4. Celik, Berk & Roche, Robin & Suryanarayanan, Siddharth & Bouquain, David & Miraoui, Abdellatif, 2017. "Electric energy management in residential areas through coordination of multiple smart homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 260-275.
    5. Vij, Akshay & Ryan, Stacey & Sampson, Spring & Harris, Susan, 2020. "Consumer preferences for on-demand transport in Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 823-839.
    6. Ren'e Aid & Dylan Possamai & Nizar Touzi, 2018. "Optimal electricity demand response contracting with responsiveness incentives," Papers 1810.09063, arXiv.org, revised May 2019.
    7. Ambler, Kate & de Brauw, Alan & Herskowitz, Sylvan & Pulido, Cristhian, 2023. "Viewpoint: Finance needs of the agricultural midstream," Food Policy, Elsevier, vol. 121(C).
    8. Thakur, Jagruti & Chakraborty, Basab, 2016. "Demand side management in developing nations: A mitigating tool for energy imbalance and peak load management," Energy, Elsevier, vol. 114(C), pages 895-912.
    9. Zhang, Xiangyu & Pipattanasomporn, Manisa & Rahman, Saifur, 2017. "A self-learning algorithm for coordinated control of rooftop units in small- and medium-sized commercial buildings," Applied Energy, Elsevier, vol. 205(C), pages 1034-1049.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David P. Brown & David E. M. Sappington, 2017. "Optimal policies to promote efficient distributed generation of electricity," Journal of Regulatory Economics, Springer, vol. 52(2), pages 159-188, October.
    2. David P. Brown & David E.M. Sappington, 2017. "Designing Compensation for Distributed Solar Generation: Is Net Metering Ever Optimal?," The Energy Journal, , vol. 38(3), pages 1-32, May.
    3. Mier, Mathias & Weissbart, Christoph, 2020. "Power markets in transition: Decarbonization, energy efficiency, and short-term demand response," Energy Economics, Elsevier, vol. 86(C).
    4. Poletti, Steve, 2009. "Government procurement of peak capacity in the New Zealand electricity market," Energy Policy, Elsevier, vol. 37(9), pages 3409-3417, September.
    5. Yang, Liu & Dong, Ciwei & Wan, C.L. Johnny & Ng, Chi To, 2013. "Electricity time-of-use tariff with consumer behavior consideration," International Journal of Production Economics, Elsevier, vol. 146(2), pages 402-410.
    6. Brown, David P. & Sappington, David E.M., 2018. "On the role of maximum demand charges in the presence of distributed generation resources," Energy Economics, Elsevier, vol. 69(C), pages 237-249.
    7. David P. Brown & David E. M. Sappington, 2022. "Vertical integration and capacity investment in the electricity sector," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(1), pages 193-226, February.
    8. Anette Boom & Sebastian Schwenen, 2021. "Is real-time pricing smart for consumers?," Journal of Regulatory Economics, Springer, vol. 60(2), pages 193-213, December.
    9. Chao, Hung-po, 2011. "Efficient pricing and investment in electricity markets with intermittent resources," Energy Policy, Elsevier, vol. 39(7), pages 3945-3953, July.
    10. Hung-po Chao, 2012. "Competitive electricity markets with consumer subscription service in a smart grid," Journal of Regulatory Economics, Springer, vol. 41(1), pages 155-180, February.
    11. Fang, Debin & Wang, Pengyu, 2023. "Optimal real-time pricing and electricity package by retail electric providers based on social learning," Energy Economics, Elsevier, vol. 117(C).
    12. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    13. Ren'e Aid & Dylan Possamai & Nizar Touzi, 2018. "Optimal electricity demand response contracting with responsiveness incentives," Papers 1810.09063, arXiv.org, revised May 2019.
    14. Daniel Adelman & Canan Uçkun, 2019. "Dynamic Electricity Pricing to Smart Homes," Operations Research, INFORMS, vol. 67(6), pages 1520-1542, November.
    15. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2020. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Retail Pricing Under Carbon Taxation and Variable Renewable Electricity Supply," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 183-213, January.
    16. Klaus Eisenack & Mathias Mier, 2019. "Peak-load pricing with different types of dispatchability," Journal of Regulatory Economics, Springer, vol. 56(2), pages 105-124, December.
    17. Makena Coffman & Paul Bernstein & Derek Stenclik & Sherilyn Wee & Aida Arik, 2018. "Integrating Renewable Energy with Time Varying Pricing," Working Papers 2018-6, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    18. Boom, Anette & Schwenen, Sebastian, 2012. "Real-time Pricing in Power Markets: Who Gains?," VfS Annual Conference 2012 (Goettingen): New Approaches and Challenges for the Labor Market of the 21st Century 66062, Verein für Socialpolitik / German Economic Association.
    19. Helm, Carsten & Mier, Mathias, 2016. "Efficient diffusion of renewable energies: A roller-coaster ride," VfS Annual Conference 2016 (Augsburg): Demographic Change 145893, Verein für Socialpolitik / German Economic Association.
    20. Lam, W., 2015. "Competiton in the Market for Flexible Resources: an application to cloud computing," LIDAM Discussion Papers CORE 2015034, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    More about this item

    Keywords

    Electricity pricing; Demand response; Regulation;
    All these keywords.

    JEL classification:

    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:regeco:v:49:y:2016:i:3:d:10.1007_s11149-016-9297-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.