IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v127y2019icp136-152.html
   My bibliography  Save this article

Structured expert judgement to understand the intrinsic vulnerability of traffic networks

Author

Listed:
  • Nogal, Maria
  • Morales Nápoles, Oswaldo
  • O’Connor, Alan

Abstract

The concept of intrinsic vulnerability of a traffic network is defined for the first time in this paper. Intrinsic vulnerability is the susceptibility to incidents characterised by a probability of occurrence in space and time of difficult estimation, which can result in considerable reduction or loss of the system functionality. Given the nature of this type of vulnerability, its assessment might arise as a major problem. Therefore, this paper investigates the assessment of the intrinsic vulnerability of a traffic network through a set of quantifiable indicators, i.e., accessibility and reliability. Moreover, it is of interest to determine whether the selected indicators are sufficient to assess the intrinsic vulnerability or if there is any significant missing aspect to be considered. A new methodology based on structured elicitation of multivariate uncertainty from experts is presented to address these issues, allowing the estimation of the intrinsic vulnerability and its probabilistic relationship with the indicators accessibility and reliability. Although applied to the case of the metric intrinsic vulnerability, the proposed methodology emerges as an effective tool to understand other traffic descriptors of difficult evaluation such as resilience.

Suggested Citation

  • Nogal, Maria & Morales Nápoles, Oswaldo & O’Connor, Alan, 2019. "Structured expert judgement to understand the intrinsic vulnerability of traffic networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 136-152.
  • Handle: RePEc:eee:transa:v:127:y:2019:i:c:p:136-152
    DOI: 10.1016/j.tra.2019.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856418301794
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2019.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sungbin Cho & Peter Gordon & James E. Moore II & Harry W. Richardson & Masanobu Shinozuka & Stephanie Chang, 2001. "Integrating Transportation Network and Regional Economic Models to Estimate the Costs of a Large Urban Earthquake," Journal of Regional Science, Wiley Blackwell, vol. 41(1), pages 39-65, February.
    2. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    3. Reggiani, Aura & Nijkamp, Peter & Lanzi, Diego, 2015. "Transport resilience and vulnerability: The role of connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 4-15.
    4. B. Berche & C. von Ferber & T. Holovatch & Yu. Holovatch, 2009. "Resilience of public transport networks against attacks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(1), pages 125-137, September.
    5. Chen, Anthony & Yang, Hai & Lo, Hong K. & Tang, Wilson H., 2002. "Capacity reliability of a road network: an assessment methodology and numerical results," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 225-252, March.
    6. Morales, O. & Kurowicka, D. & Roelen, A., 2008. "Eliciting conditional and unconditional rank correlations from conditional probabilities," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 699-710.
    7. Watling, David & Balijepalli, N.C., 2012. "A method to assess demand growth vulnerability of travel times on road network links," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 772-789.
    8. Hanea, Anca & Morales Napoles, Oswaldo & Ababei, Dan, 2015. "Non-parametric Bayesian networks: Improving theory and reviewing applications," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 265-284.
    9. Simone Caschili & Aura Reggiani & Francesca Medda, 2015. "Resilience and Vulnerability of Spatial Economic Networks," Networks and Spatial Economics, Springer, vol. 15(2), pages 205-210, June.
    10. Cooke, Roger M. & Goossens, Louis L.H.J., 2008. "TU Delft expert judgment data base," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 657-674.
    11. Colson, Abigail R. & Cooke, Roger M., 2017. "Cross validation for the classical model of structured expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 109-120.
    12. Marco Modica & Aura Reggiani, 2015. "Spatial Economic Resilience: Overview and Perspectives," Networks and Spatial Economics, Springer, vol. 15(2), pages 211-233, June.
    13. Hiroshi Wakabayashi, 2012. "Travel Time Reliability Indices for Highway Users and Operators," Transportation Research, Economics and Policy, in: David M. Levinson & Henry X. Liu & Michael Bell (ed.), Network Reliability in Practice, edition 1, chapter 0, pages 79-95, Springer.
    14. Michael A. P. Taylor, 2008. "Critical Transport Infrastructure in Urban Areas: Impacts of Traffic Incidents Assessed Using Accessibility‐Based Network Vulnerability Analysis," Growth and Change, Wiley Blackwell, vol. 39(4), pages 593-616, December.
    15. Eric D. Vugrin & Mark A. Turnquist & Nathanael J.K. Brown, 2014. "Optimal recovery sequencing for enhanced resilience and service restoration in transportation networks," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 10(3/4), pages 218-246.
    16. Michael Taylor & Somenahalli Sekhar & Glen D'Este, 2006. "Application of Accessibility Based Methods for Vulnerability Analysis of Strategic Road Networks," Networks and Spatial Economics, Springer, vol. 6(3), pages 267-291, September.
    17. Sohn, Jungyul, 2006. "Evaluating the significance of highway network links under the flood damage: An accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 491-506, July.
    18. Snelder, M. & van Zuylen, H.J. & Immers, L.H., 2012. "A framework for robustness analysis of road networks for short term variations in supply," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 828-842.
    19. Nogal, Maria & O'Connor, Alan & Caulfield, Brian & Martinez-Pastor, Beatriz, 2016. "Resilience of traffic networks: From perturbation to recovery via a dynamic restricted equilibrium model," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 84-96.
    20. El-Rashidy, Rawia Ahmed & Grant-Muller, Susan M., 2014. "An assessment method for highway network vulnerability," Journal of Transport Geography, Elsevier, vol. 34(C), pages 34-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Novak, David C. & Sullivan, James L. & Niles, Meredith T., 2021. "Targeted Investment for Food Access," Institute of Transportation Studies, Working Paper Series qt9b71p9zg, Institute of Transportation Studies, UC Davis.
    2. Maria Nogal & Pilar Jiménez, 2020. "Attractiveness of Bike-Sharing Stations from a Multi-Modal Perspective: The Role of Objective and Subjective Features," Sustainability, MDPI, vol. 12(21), pages 1-26, October.
    3. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    2. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    3. Victor Cantillo & Luis F. Macea & Miguel Jaller, 2019. "Assessing Vulnerability of Transportation Networks for Disaster Response Operations," Networks and Spatial Economics, Springer, vol. 19(1), pages 243-273, March.
    4. Reggiani, Aura & Nijkamp, Peter & Lanzi, Diego, 2015. "Transport resilience and vulnerability: The role of connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 4-15.
    5. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    6. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    7. Gu, Yu & Chen, Anthony & Xu, Xiangdong, 2023. "Measurement and ranking of important link combinations in the analysis of transportation network vulnerability envelope buffers under multiple-link disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 118-144.
    8. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    9. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.
    10. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    11. Zhu, Jingjing & Xu, Xiangdong & Wang, Zijian, 2023. "Economic evaluation of redundancy design for transportation networks under disruptions: Framework and case study," Transport Policy, Elsevier, vol. 142(C), pages 70-83.
    12. Bagloee, Saeed Asadi & Sarvi, Majid & Wolshon, Brian & Dixit, Vinayak, 2017. "Identifying critical disruption scenarios and a global robustness index tailored to real life road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 60-81.
    13. Rodríguez-Núñez, Eduardo & García-Palomares, Juan Carlos, 2014. "Measuring the vulnerability of public transport networks," Journal of Transport Geography, Elsevier, vol. 35(C), pages 50-63.
    14. Aura Reggiani, 2022. "The Architecture of Connectivity: A Key to Network Vulnerability, Complexity and Resilience," Networks and Spatial Economics, Springer, vol. 22(3), pages 415-437, September.
    15. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    16. Rostislav Vodák & Michal Bíl & Tomáš Svoboda & Zuzana Křivánková & Jan Kubeček & Tomáš Rebok & Petr Hliněný, 2019. "A deterministic approach for rapid identification of the critical links in networks," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-18, July.
    17. Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor & Suau-Sanchez, Pere, 2017. "Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays: Ranking the most critical airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 119-145.
    18. Paramet Luathep & Agachai Sumalee & H. Ho & Fumitaka Kurauchi, 2011. "Large-scale road network vulnerability analysis: a sensitivity analysis based approach," Transportation, Springer, vol. 38(5), pages 799-817, September.
    19. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    20. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:127:y:2019:i:c:p:136-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.