IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v79y2011i3p82-96.html
   My bibliography  Save this article

Effects of genetic architecture on the evolution of assortative mating under frequency-dependent disruptive selection

Author

Listed:
  • Rettelbach, Agnes
  • Hermisson, Joachim
  • Dieckmann, Ulf
  • Kopp, Michael

Abstract

We consider a model of sympatric speciation due to frequency-dependent competition, in which it was previously assumed that the evolving traits have a very simple genetic architecture. In the present study, we numerically analyze the consequences of relaxing this assumption. First, previous models assumed that assortative mating evolves in infinitesimal steps. Here, we show that the range of parameters for which speciation is possible increases when mutational steps are large. Second, it was assumed that the trait under frequency-dependent selection is determined by a single locus with two alleles and additive effects. As a consequence, the resultant intermediate phenotype is always heterozygous and can never breed true. To relax this assumption, here we add a second locus influencing the trait. We find three new possible evolutionary outcomes: evolution of three reproductively isolated species, a monomorphic equilibrium with only the intermediate phenotype, and a randomly mating population with a steep unimodal distribution of phenotypes. Both extensions of the original model thus increase the likelihood of competitive speciation.

Suggested Citation

  • Rettelbach, Agnes & Hermisson, Joachim & Dieckmann, Ulf & Kopp, Michael, 2011. "Effects of genetic architecture on the evolution of assortative mating under frequency-dependent disruptive selection," Theoretical Population Biology, Elsevier, vol. 79(3), pages 82-96.
  • Handle: RePEc:eee:thpobi:v:79:y:2011:i:3:p:82-96
    DOI: 10.1016/j.tpb.2010.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580910001012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2010.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ulf Dieckmann & Michael Doebeli, 1999. "On the origin of species by sympatric speciation," Nature, Nature, vol. 400(6742), pages 354-357, July.
    2. U. Dieckmann & M. Doebeli, 1999. "On the Origin of Species by Sympatric Speciation," Working Papers ir99013, International Institute for Applied Systems Analysis.
    3. Michael Doebeli & Ulf Dieckmann, 2003. "Speciation along environmental gradients," Nature, Nature, vol. 421(6920), pages 259-264, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Åke Brännström & Jacob Johansson & Niels Von Festenberg, 2013. "The Hitchhiker’s Guide to Adaptive Dynamics," Games, MDPI, vol. 4(3), pages 1-25, June.
    2. Sakamoto, T. & Innan, H., 2020. "Establishment process of a magic trait allele subject to both divergent selection and assortative mating," Theoretical Population Biology, Elsevier, vol. 135(C), pages 9-18.
    3. José Camacho Mateu & Matteo Sireci & Miguel A Muñoz, 2021. "Phenotypic-dependent variability and the emergence of tolerance in bacterial populations," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-28, September.
    4. Débarre, Florence & Otto, Sarah P., 2016. "Evolutionary dynamics of a quantitative trait in a finite asexual population," Theoretical Population Biology, Elsevier, vol. 108(C), pages 75-88.
    5. Jonathan Newton, 2017. "The preferences of Homo Moralis are unstable under evolving assortativity," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(2), pages 583-589, May.
    6. Alexandros Rigos & Heinrich H. Nax, 2015. "Assortativity evolving from social dilemmas," Discussion Papers in Economics 15/19, Division of Economics, School of Business, University of Leicester.
    7. Chaianunporn, Thotsapol & Hovestadt, Thomas, 2012. "Concurrent evolution of random dispersal and habitat niche width in host-parasitoid systems," Ecological Modelling, Elsevier, vol. 247(C), pages 241-250.
    8. Blath, Jochen & Paul, Tobias & Tóbiás, András & Wilke Berenguer, Maite, 2024. "The impact of dormancy on evolutionary branching," Theoretical Population Biology, Elsevier, vol. 156(C), pages 66-76.
    9. Boettiger, Carl & Dushoff, Jonathan & Weitz, Joshua S., 2010. "Fluctuation domains in adaptive evolution," Theoretical Population Biology, Elsevier, vol. 77(1), pages 6-13.
    10. Michael B. Doud & Animesh Gupta & Victor Li & Sarah J. Medina & Caesar A. Fuente & Justin R. Meyer, 2024. "Competition-driven eco-evolutionary feedback reshapes bacteriophage lambda’s fitness landscape and enables speciation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Svardal, Hannes & Rueffler, Claus & Hermisson, Joachim, 2015. "A general condition for adaptive genetic polymorphism in temporally and spatially heterogeneous environments," Theoretical Population Biology, Elsevier, vol. 99(C), pages 76-97.
    12. Costa, Carolina L.N. & Marquitti, Flavia M.D. & Perez, S. Ivan & Schneider, David M. & Ramos, Marlon F. & de Aguiar, Marcus A.M., 2018. "Registering the evolutionary history in individual-based models of speciation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 1-14.
    13. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    14. Champagnat, Nicolas, 2006. "A microscopic interpretation for adaptive dynamics trait substitution sequence models," Stochastic Processes and their Applications, Elsevier, vol. 116(8), pages 1127-1160, August.
    15. E. Kisdi & F.J.A. Jacobs & S.A.H. Geritz, 2000. "Red Queen Evolution by Cycles of Evolutionary Branching and Extinction," Working Papers ir00030, International Institute for Applied Systems Analysis.
    16. Matessi, Carlo & Schneider, Kristan A., 2009. "Optimization under frequency-dependent selection," Theoretical Population Biology, Elsevier, vol. 76(1), pages 1-12.
    17. Gong, Yubing & Wang, Li & Xu, Bo, 2012. "Delay-induced diversity of firing behavior and ordered chaotic firing in adaptive neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 548-553.
    18. Ziwei Wang & Jiabin Wu, 2023. "Partner Choice and Morality: Preference Evolution under Stable Matching," Papers 2304.11504, arXiv.org, revised Oct 2023.
    19. Bagnoli, Franco & Guardiani, Carlo, 2005. "A model of sympatric speciation through assortative mating," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 534-574.
    20. György Barabás & Christine Parent & Andrew Kraemer & Frederik Perre & Frederik Laender, 2022. "The evolution of trait variance creates a tension between species diversity and functional diversity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:79:y:2011:i:3:p:82-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.