IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v158y2024icp21-59.html
   My bibliography  Save this article

Polygenic dynamics underlying the response of quantitative traits to directional selection

Author

Listed:
  • Götsch, Hannah
  • Bürger, Reinhard

Abstract

We study the response of a quantitative trait to exponential directional selection in a finite haploid population, both at the genetic and the phenotypic level. We assume an infinite sites model, in which the number of new mutations per generation in the population follows a Poisson distribution (with mean Θ) and each mutation occurs at a new, previously monomorphic site. Mutation effects are beneficial and drawn from a distribution. Sites are unlinked and contribute additively to the trait. Assuming that selection is stronger than random genetic drift, we model the initial phase of the dynamics by a supercritical Galton–Watson process. This enables us to obtain time-dependent results. We show that the copy-number distribution of the mutant in generation n, conditioned on non-extinction until n, is described accurately by the deterministic increase from an initial distribution with mean 1. This distribution is related to the absolutely continuous part W+ of the random variable, typically denoted W, that characterizes the stochasticity accumulating during the mutant’s sweep. A suitable transformation yields the approximate dynamics of the mutant frequency distribution in a Wright–Fisher population of size N. Our expression provides a very accurate approximation except when mutant frequencies are close to 1. On this basis, we derive explicitly the (approximate) time dependence of the expected mean and variance of the trait and of the expected number of segregating sites. Unexpectedly, we obtain highly accurate approximations for all times, even for the quasi-stationary phase when the expected per-generation response and the trait variance have equilibrated. The latter refine classical results. In addition, we find that Θ is the main determinant of the pattern of adaptation at the genetic level, i.e., whether the initial allele-frequency dynamics are best described by sweep-like patterns at few loci or small allele-frequency shifts at many. The number of segregating sites is an appropriate indicator for these patterns. The selection strength determines primarily the rate of adaptation. The accuracy of our results is tested by comprehensive simulations in a Wright–Fisher framework. We argue that our results apply to more complex forms of directional selection.

Suggested Citation

  • Götsch, Hannah & Bürger, Reinhard, 2024. "Polygenic dynamics underlying the response of quantitative traits to directional selection," Theoretical Population Biology, Elsevier, vol. 158(C), pages 21-59.
  • Handle: RePEc:eee:thpobi:v:158:y:2024:i:c:p:21-59
    DOI: 10.1016/j.tpb.2024.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004058092400039X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2024.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:158:y:2024:i:c:p:21-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.