IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v158y2024icp21-59.html
   My bibliography  Save this article

Polygenic dynamics underlying the response of quantitative traits to directional selection

Author

Listed:
  • Götsch, Hannah
  • Bürger, Reinhard

Abstract

We study the response of a quantitative trait to exponential directional selection in a finite haploid population, both at the genetic and the phenotypic level. We assume an infinite sites model, in which the number of new mutations per generation in the population follows a Poisson distribution (with mean Θ) and each mutation occurs at a new, previously monomorphic site. Mutation effects are beneficial and drawn from a distribution. Sites are unlinked and contribute additively to the trait. Assuming that selection is stronger than random genetic drift, we model the initial phase of the dynamics by a supercritical Galton–Watson process. This enables us to obtain time-dependent results. We show that the copy-number distribution of the mutant in generation n, conditioned on non-extinction until n, is described accurately by the deterministic increase from an initial distribution with mean 1. This distribution is related to the absolutely continuous part W+ of the random variable, typically denoted W, that characterizes the stochasticity accumulating during the mutant’s sweep. A suitable transformation yields the approximate dynamics of the mutant frequency distribution in a Wright–Fisher population of size N. Our expression provides a very accurate approximation except when mutant frequencies are close to 1. On this basis, we derive explicitly the (approximate) time dependence of the expected mean and variance of the trait and of the expected number of segregating sites. Unexpectedly, we obtain highly accurate approximations for all times, even for the quasi-stationary phase when the expected per-generation response and the trait variance have equilibrated. The latter refine classical results. In addition, we find that Θ is the main determinant of the pattern of adaptation at the genetic level, i.e., whether the initial allele-frequency dynamics are best described by sweep-like patterns at few loci or small allele-frequency shifts at many. The number of segregating sites is an appropriate indicator for these patterns. The selection strength determines primarily the rate of adaptation. The accuracy of our results is tested by comprehensive simulations in a Wright–Fisher framework. We argue that our results apply to more complex forms of directional selection.

Suggested Citation

  • Götsch, Hannah & Bürger, Reinhard, 2024. "Polygenic dynamics underlying the response of quantitative traits to directional selection," Theoretical Population Biology, Elsevier, vol. 158(C), pages 21-59.
  • Handle: RePEc:eee:thpobi:v:158:y:2024:i:c:p:21-59
    DOI: 10.1016/j.tpb.2024.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004058092400039X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2024.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeremy J Berg & Graham Coop, 2014. "A Population Genetic Signal of Polygenic Adaptation," PLOS Genetics, Public Library of Science, vol. 10(8), pages 1-25, August.
    2. Steinrücken, Matthias & Wang, Y.X. Rachel & Song, Yun S., 2013. "An explicit transition density expansion for a multi-allelic Wright–Fisher diffusion with general diploid selection," Theoretical Population Biology, Elsevier, vol. 83(C), pages 1-14.
    3. Barton, N.H. & Etheridge, A.M. & Véber, A., 2017. "The infinitesimal model: Definition, derivation, and implications," Theoretical Population Biology, Elsevier, vol. 118(C), pages 50-73.
    4. Jain, Kavita & Kaushik, Sachin, 2022. "Joint effect of changing selection and demography on the site frequency spectrum," Theoretical Population Biology, Elsevier, vol. 146(C), pages 46-60.
    5. Martin, Guillaume & Lambert, Amaury, 2015. "A simple, semi-deterministic approximation to the distribution of selective sweeps in large populations," Theoretical Population Biology, Elsevier, vol. 101(C), pages 40-46.
    6. Arjen E. van’t Hof & Pascal Campagne & Daniel J. Rigden & Carl J. Yung & Jessica Lingley & Michael A. Quail & Neil Hall & Alistair C. Darby & Ilik J. Saccheri, 2016. "The industrial melanism mutation in British peppered moths is a transposable element," Nature, Nature, vol. 534(7605), pages 102-105, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikula, Lynette Caitlin & Vogl, Claus, 2024. "The expected sample allele frequencies from populations of changing size via orthogonal polynomials," Theoretical Population Biology, Elsevier, vol. 157(C), pages 55-85.
    2. Barton, N.H. & Etheridge, A.M., 2018. "Establishment in a new habitat by polygenic adaptation," Theoretical Population Biology, Elsevier, vol. 122(C), pages 110-127.
    3. Steiner, Ulrich K. & Tuljapurkar, Shripad, 2020. "Drivers of diversity in individual life courses: Sensitivity of the population entropy of a Markov chain," Theoretical Population Biology, Elsevier, vol. 133(C), pages 159-167.
    4. Manuel Plate & Richard Bernstein & Andreas Hoppe & Kaspar Bienefeld, 2019. "Comparison of infinitesimal and finite locus models for long-term breeding simulations with direct and maternal effects at the example of honeybees," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-22, March.
    5. González-Forero, Mauricio, 2024. "A mathematical framework for evo-devo dynamics," Theoretical Population Biology, Elsevier, vol. 155(C), pages 24-50.
    6. Olivier David & Arnaud Le Rouzic & Christine Dillmann, 2022. "Optimization of sampling designs for pedigrees and association studies," Biometrics, The International Biometric Society, vol. 78(3), pages 1056-1066, September.
    7. Yengo, Loic & Visscher, Peter M., 2018. "Assortative mating on complex traits revisited: Double first cousins and the X-chromosome," Theoretical Population Biology, Elsevier, vol. 124(C), pages 51-60.
    8. John P Lloyd & Matthew B Soellner & Sofia D Merajver & Jun Z Li, 2021. "Impact of between-tissue differences on pan-cancer predictions of drug sensitivity," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-25, February.
    9. Hakhamanesh Mostafavi & Tomaz Berisa & Felix R Day & John R B Perry & Molly Przeworski & Joseph K Pickrell, 2017. "Identifying genetic variants that affect viability in large cohorts," PLOS Biology, Public Library of Science, vol. 15(9), pages 1-29, September.
    10. David B. Stern & Nathan W. Anderson & Juanita A. Diaz & Carol Eunmi Lee, 2022. "Genome-wide signatures of synergistic epistasis during parallel adaptation in a Baltic Sea copepod," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Dekens, L. & Otto, S.P. & Calvez, V., 2022. "The best of both worlds: Combining population genetic and quantitative genetic models," Theoretical Population Biology, Elsevier, vol. 148(C), pages 49-75.
    12. Parsons, Todd L. & Ralph, Peter L., 2024. "Large effects and the infinitesimal model," Theoretical Population Biology, Elsevier, vol. 156(C), pages 117-129.
    13. Nurfatima Jandarova & Aldo Rustichini, 2024. "Selection and the Roy Model in the Neolithic Transition," Working Papers 27, Finnish Centre of Excellence in Tax Systems Research.
    14. Beomsu Kim & Dan Say Kim & Joong-Gon Shin & Sangseob Leem & Minyoung Cho & Hanji Kim & Ki-Nam Gu & Jung Yeon Seo & Seung Won You & Alicia R. Martin & Sun Gyoo Park & Yunkwan Kim & Choongwon Jeong & Na, 2024. "Mapping and annotating genomic loci to prioritize genes and implicate distinct polygenic adaptations for skin color," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. David, Olivier & van Frank, Gaëlle & Goldringer, Isabelle & Rivière, Pierre & Turbet Delof, Michel, 2020. "Bayesian inference of natural selection from spatiotemporal phenotypic data," Theoretical Population Biology, Elsevier, vol. 131(C), pages 100-109.
    16. Schraiber, Joshua G. & Landis, Michael J., 2015. "Sensitivity of quantitative traits to mutational effects and number of loci," Theoretical Population Biology, Elsevier, vol. 102(C), pages 85-93.
    17. Aldo Rustichini, 2023. "Economics with a biological foundation," Indian Economic Review, Springer, vol. 58(1), pages 1-40, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:158:y:2024:i:c:p:21-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.