IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v148y2022icp49-75.html
   My bibliography  Save this article

The best of both worlds: Combining population genetic and quantitative genetic models

Author

Listed:
  • Dekens, L.
  • Otto, S.P.
  • Calvez, V.

Abstract

Numerous traits under migration–selection balance are shown to exhibit complex patterns of genetic architecture with large variance in effect sizes. However, the conditions under which such genetic architectures are stable have yet to be investigated, because studying the influence of a large number of small allelic effects on the maintenance of spatial polymorphism is mathematically challenging, due to the high complexity of the systems that arise. In particular, in the most simple case of a haploid population in a two-patch environment, while it is known from population genetics that polymorphism at a single major-effect locus is stable in the symmetric case, there exist no analytical predictions on how this polymorphism holds when a polygenic background also contributes to the trait. Here we propose to answer this question by introducing a new eco-evo methodology that allows us to take into account the combined contributions of a major-effect locus and of a quantitative background resulting from small-effect loci, where inheritance is encoded according to an extension to the infinitesimal model. In a regime of small variance contributed by the quantitative loci, we justify that traits are concentrated around the major alleles, according to a normal distribution, using new convex analysis arguments. This allows a reduction in the complexity of the system using a separation of time scales approach. We predict an undocumented phenomenon of loss of polymorphism at the major-effect locus despite strong selection for local adaptation, because the quantitative background slowly disrupts the rapidly established polymorphism at the major-effect locus, which is confirmed by individual-based simulations. Our study highlights how segregation of a quantitative background can greatly impact the dynamics of major-effect loci by provoking migrational meltdowns. We also provide a comprehensive toolbox designed to describe how to apply our method to more complex population genetic models.

Suggested Citation

  • Dekens, L. & Otto, S.P. & Calvez, V., 2022. "The best of both worlds: Combining population genetic and quantitative genetic models," Theoretical Population Biology, Elsevier, vol. 148(C), pages 49-75.
  • Handle: RePEc:eee:thpobi:v:148:y:2022:i:c:p:49-75
    DOI: 10.1016/j.tpb.2022.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580922000685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2022.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barton, N.H. & Etheridge, A.M. & Véber, A., 2017. "The infinitesimal model: Definition, derivation, and implications," Theoretical Population Biology, Elsevier, vol. 118(C), pages 50-73.
    2. Geroldinger, Ludwig & Bürger, Reinhard, 2014. "A two-locus model of spatially varying stabilizing or directional selection on a quantitative trait," Theoretical Population Biology, Elsevier, vol. 94(C), pages 10-41.
    3. Bürger, Reinhard & Akerman, Ada, 2011. "The effects of linkage and gene flow on local adaptation: A two-locus continent–island model," Theoretical Population Biology, Elsevier, vol. 80(4), pages 272-288.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barton, N.H. & Etheridge, A.M., 2018. "Establishment in a new habitat by polygenic adaptation," Theoretical Population Biology, Elsevier, vol. 122(C), pages 110-127.
    2. Geroldinger, Ludwig & Bürger, Reinhard, 2015. "Clines in quantitative traits: The role of migration patterns and selection scenarios," Theoretical Population Biology, Elsevier, vol. 99(C), pages 43-66.
    3. Steiner, Ulrich K. & Tuljapurkar, Shripad, 2020. "Drivers of diversity in individual life courses: Sensitivity of the population entropy of a Markov chain," Theoretical Population Biology, Elsevier, vol. 133(C), pages 159-167.
    4. Manuel Plate & Richard Bernstein & Andreas Hoppe & Kaspar Bienefeld, 2019. "Comparison of infinitesimal and finite locus models for long-term breeding simulations with direct and maternal effects at the example of honeybees," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-22, March.
    5. González-Forero, Mauricio, 2024. "A mathematical framework for evo-devo dynamics," Theoretical Population Biology, Elsevier, vol. 155(C), pages 24-50.
    6. Olivier David & Arnaud Le Rouzic & Christine Dillmann, 2022. "Optimization of sampling designs for pedigrees and association studies," Biometrics, The International Biometric Society, vol. 78(3), pages 1056-1066, September.
    7. Yengo, Loic & Visscher, Peter M., 2018. "Assortative mating on complex traits revisited: Double first cousins and the X-chromosome," Theoretical Population Biology, Elsevier, vol. 124(C), pages 51-60.
    8. Parsons, Todd L. & Ralph, Peter L., 2024. "Large effects and the infinitesimal model," Theoretical Population Biology, Elsevier, vol. 156(C), pages 117-129.
    9. David, Olivier & van Frank, Gaëlle & Goldringer, Isabelle & Rivière, Pierre & Turbet Delof, Michel, 2020. "Bayesian inference of natural selection from spatiotemporal phenotypic data," Theoretical Population Biology, Elsevier, vol. 131(C), pages 100-109.
    10. Götsch, Hannah & Bürger, Reinhard, 2024. "Polygenic dynamics underlying the response of quantitative traits to directional selection," Theoretical Population Biology, Elsevier, vol. 158(C), pages 21-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:148:y:2022:i:c:p:49-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.