IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v132y2020icp1-15.html
   My bibliography  Save this article

Statistical tools for seed bank detection

Author

Listed:
  • Blath, Jochen
  • Buzzoni, Eugenio
  • Koskela, Jere
  • Wilke Berenguer, Maite

Abstract

We derive statistical tools to analyze the patterns of genetic variability produced by models related to seed banks; in particular the Kingman coalescent, its time-changed counterpart describing so-called weak seed banks, the strong seed bank coalescent, and the two-island structured coalescent. As (strong) seed banks stratify a population, we expect them to produce a signal comparable to population structure. We present tractable formulas for Wright’s FST and the expected site frequency spectrum for these models, and show that they can distinguish between some models for certain ranges of parameters. We then use pseudo-marginal MCMC to show that the full likelihood can reliably distinguish between all models in the presence of parameter uncertainty under moderate stratification, and point out statistical pitfalls arising from stratification that is either too strong or too weak. We further show that it is possible to infer parameters, and in particular determine whether mutation is taking place in the (strong) seed bank.

Suggested Citation

  • Blath, Jochen & Buzzoni, Eugenio & Koskela, Jere & Wilke Berenguer, Maite, 2020. "Statistical tools for seed bank detection," Theoretical Population Biology, Elsevier, vol. 132(C), pages 1-15.
  • Handle: RePEc:eee:thpobi:v:132:y:2020:i:c:p:1-15
    DOI: 10.1016/j.tpb.2020.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580920300010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2020.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heinrich, Lukas & Müller, Johannes & Tellier, Aurélien & Živković, Daniel, 2018. "Effects of population- and seed bank size fluctuations on neutral evolution and efficacy of natural selection," Theoretical Population Biology, Elsevier, vol. 123(C), pages 45-69.
    2. Hobolth, Asger & Siri-Jégousse, Arno & Bladt, Mogens, 2019. "Phase-type distributions in population genetics," Theoretical Population Biology, Elsevier, vol. 127(C), pages 16-32.
    3. Steinrücken, Matthias & Birkner, Matthias & Blath, Jochen, 2013. "Analysis of DNA sequence variation within marine species using Beta-coalescents," Theoretical Population Biology, Elsevier, vol. 87(C), pages 15-24.
    4. Koopmann, Bendix & Müller, Johannes & Tellier, Aurélien & Živković, Daniel, 2017. "Fisher–Wright model with deterministic seed bank and selection," Theoretical Population Biology, Elsevier, vol. 114(C), pages 29-39.
    5. Russell H. Vreeland & William D. Rosenzweig & Dennis W. Powers, 2000. "Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal," Nature, Nature, vol. 407(6806), pages 897-900, October.
    6. Matthew Stephens & Peter Donnelly, 2000. "Inference in molecular population genetics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 605-635.
    7. Jenkins Paul A., 2012. "Stopping-Time Resampling and Population Genetic Inference under Coalescent Models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hobolth, Asger & Rivas-González, Iker & Bladt, Mogens & Futschik, Andreas, 2024. "Phase-type distributions in mathematical population genetics: An emerging framework," Theoretical Population Biology, Elsevier, vol. 157(C), pages 14-32.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikula, Lynette Caitlin & Vogl, Claus, 2024. "The expected sample allele frequencies from populations of changing size via orthogonal polynomials," Theoretical Population Biology, Elsevier, vol. 157(C), pages 55-85.
    2. Freund, Fabian & Siri-Jégousse, Arno, 2021. "The impact of genetic diversity statistics on model selection between coalescents," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    3. Riccardo De Bin & Vegard Grødem Stikbakke, 2023. "A boosting first-hitting-time model for survival analysis in high-dimensional settings," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 420-440, April.
    4. Griffiths, Robert C. & Tavaré, Simon, 2018. "Ancestral inference from haplotypes and mutations," Theoretical Population Biology, Elsevier, vol. 122(C), pages 12-21.
    5. Hobolth, Asger & Rivas-González, Iker & Bladt, Mogens & Futschik, Andreas, 2024. "Phase-type distributions in mathematical population genetics: An emerging framework," Theoretical Population Biology, Elsevier, vol. 157(C), pages 14-32.
    6. Steinrücken, Matthias & Paul, Joshua S. & Song, Yun S., 2013. "A sequentially Markov conditional sampling distribution for structured populations with migration and recombination," Theoretical Population Biology, Elsevier, vol. 87(C), pages 51-61.
    7. Bo Friis Nielsen, 2022. "Characterisation of multivariate phase type distributions," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 229-231, April.
    8. Birkner, Matthias & Blath, Jochen & Steinrücken, Matthias, 2011. "Importance sampling for Lambda-coalescents in the infinitely many sites model," Theoretical Population Biology, Elsevier, vol. 79(4), pages 155-173.
    9. Usman Sanusi & Sona John & Johannes Mueller & Aurélien Tellier, 2022. "Quiescence Generates Moving Average in a Stochastic Epidemiological Model with One Host and Two Parasites," Mathematics, MDPI, vol. 10(13), pages 1-22, June.
    10. Legried, Brandon & Terhorst, Jonathan, 2022. "Rates of convergence in the two-island and isolation-with-migration models," Theoretical Population Biology, Elsevier, vol. 147(C), pages 16-27.
    11. Jain, Kavita & Kaushik, Sachin, 2022. "Joint effect of changing selection and demography on the site frequency spectrum," Theoretical Population Biology, Elsevier, vol. 146(C), pages 46-60.
    12. Larribe Fabrice & Lessard Sabin, 2008. "A Composite-Conditional-Likelihood Approach for Gene Mapping Based on Linkage Disequilibrium in Windows of Marker Loci," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-33, August.
    13. Eldon, Bjarki & Stephan, Wolfgang, 2018. "Evolution of highly fecund haploid populations," Theoretical Population Biology, Elsevier, vol. 119(C), pages 48-56.
    14. Uyenoyama, Marcy K. & Takebayashi, Naoki & Kumagai, Seiji, 2020. "Allele frequency spectra in structured populations: Novel-allele probabilities under the labelled coalescent," Theoretical Population Biology, Elsevier, vol. 133(C), pages 130-140.
    15. Heinrich, Lukas & Müller, Johannes & Tellier, Aurélien & Živković, Daniel, 2018. "Effects of population- and seed bank size fluctuations on neutral evolution and efficacy of natural selection," Theoretical Population Biology, Elsevier, vol. 123(C), pages 45-69.
    16. Blath, Jochen & Cronjäger, Mathias Christensen & Eldon, Bjarki & Hammer, Matthias, 2016. "The site-frequency spectrum associated with Ξ-coalescents," Theoretical Population Biology, Elsevier, vol. 110(C), pages 36-50.
    17. Miró Pina, Verónica & Joly, Émilien & Siri-Jégousse, Arno, 2023. "Estimating the Lambda measure in multiple-merger coalescents," Theoretical Population Biology, Elsevier, vol. 154(C), pages 94-101.
    18. Hössjer Ola & Hartman Linda & Humphreys Keith, 2009. "Ancestral Recombination Graphs under Non-Random Ascertainment, with Applications to Gene Mapping," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-46, September.
    19. Blath, Jochen & Tóbiás, András, 2020. "Invasion and fixation of microbial dormancy traits under competitive pressure," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7363-7395.
    20. Vogl, Claus & Mikula, Lynette C. & Burden, Conrad J., 2020. "Maximum likelihood estimators for scaled mutation rates in an equilibrium mutation–drift model," Theoretical Population Biology, Elsevier, vol. 134(C), pages 106-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:132:y:2020:i:c:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.