IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v77y2024ics0160791x24000666.html
   My bibliography  Save this article

When do employees learn from artificial intelligence? The moderating effects of perceived enjoyment and task-related complexity

Author

Listed:
  • Li, Yunjian
  • Song, Yixiao
  • Sun, Yanming
  • Zeng, Mingzhuo

Abstract

Based on social learning theory, this paper empirically analyzed the effect of employee artificial intelligence (AI) use frequency on employee learning from AI, and explored the moderating effects of employee perceived enjoyment and task-related complexity in this context using a questionnaire-based approach. The study showed that employee AI use frequency can promote employee learning from AI. Employee perceived enjoyment can facilitate employee to learn from AI, and employee perceived enjoyment positively moderates the effect of employee AI use frequency on employee learning from AI. Task-related complexity positively influences employee learning from AI and enhances the positive effect of employee AI use frequency on employee learning from AI, as does employee perceived enjoyment on employee learning from AI. Significant three-way interaction effects among employee AI use frequency, employee perceived enjoyment, and task-related complexity on employee learning from AI are observed. In this paper, a scale for measuring employee learning from AI is developed that extends the learning model from ‘human learning from humans’ to ‘human learning from AI’, broadens the scope of application and theoretical connotations of social learning theory, and opens the black box of the relationship between employee AI use and employee learning from AI.

Suggested Citation

  • Li, Yunjian & Song, Yixiao & Sun, Yanming & Zeng, Mingzhuo, 2024. "When do employees learn from artificial intelligence? The moderating effects of perceived enjoyment and task-related complexity," Technology in Society, Elsevier, vol. 77(C).
  • Handle: RePEc:eee:teinso:v:77:y:2024:i:c:s0160791x24000666
    DOI: 10.1016/j.techsoc.2024.102518
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X24000666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2024.102518?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:77:y:2024:i:c:s0160791x24000666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.