A Deep Neural Network-Based Method for Prediction of Dementia Using Big Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jung H. Lee & Kang U. Lee & Dong Y. Lee & Ki W. Kim & Jin H. Jhoo & Ju H. Kim & Kun H. Lee & Sung Y. Kim & Sul H. Han & Jong I. Woo, 2002. "Development of the Korean Version of the Consortium to Establish a Registry for Alzheimer's Disease Assessment Packet (CERAD-K)," The Journals of Gerontology: Series B, The Gerontological Society of America, vol. 57(1), pages 47-53.
- Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Correction: Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 546(7660), pages 686-686, June.
- Chris Allen & Ming-Hsiang Tsou & Anoshe Aslam & Anna Nagel & Jean-Mark Gawron, 2016. "Applying GIS and Machine Learning Methods to Twitter Data for Multiscale Surveillance of Influenza," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-10, July.
- Igor O Korolev & Laura L Symonds & Andrea C Bozoki & Alzheimer's Disease Neuroimaging Initiative, 2016. "Predicting Progression from Mild Cognitive Impairment to Alzheimer's Dementia Using Clinical, MRI, and Plasma Biomarkers via Probabilistic Pattern Classification," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-25, February.
- Jihye Lim & Jungyoon Kim & Songhee Cheon, 2019. "A Deep Neural Network-Based Method for Early Detection of Osteoarthritis Using Statistical Data," IJERPH, MDPI, vol. 16(7), pages 1-11, April.
- Qinneng Xu & Yulia R Gel & L Leticia Ramirez Ramirez & Kusha Nezafati & Qingpeng Zhang & Kwok-Leung Tsui, 2017. "Forecasting influenza in Hong Kong with Google search queries and statistical model fusion," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-17, May.
- Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 542(7639), pages 115-118, February.
- Songhee Cheon & Jungyoon Kim & Jihye Lim, 2019. "The Use of Deep Learning to Predict Stroke Patient Mortality," IJERPH, MDPI, vol. 16(11), pages 1-12, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Songhee Cheon & Jungyoon Kim & Jihye Lim, 2019. "The Use of Deep Learning to Predict Stroke Patient Mortality," IJERPH, MDPI, vol. 16(11), pages 1-12, May.
- Victor Olsavszky & Mihnea Dosius & Cristian Vladescu & Johannes Benecke, 2020. "Time Series Analysis and Forecasting with Automated Machine Learning on a National ICD-10 Database," IJERPH, MDPI, vol. 17(14), pages 1-17, July.
- Sangwon Chae & Sungjun Kwon & Donghyun Lee, 2018. "Predicting Infectious Disease Using Deep Learning and Big Data," IJERPH, MDPI, vol. 15(8), pages 1-20, July.
- Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
- Freddy Gabbay & Rotem Lev Aharoni & Ori Schweitzer, 2022. "Deep Neural Network Memory Performance and Throughput Modeling and Simulation Framework," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
- Gang Yu & Kai Sun & Chao Xu & Xing-Hua Shi & Chong Wu & Ting Xie & Run-Qi Meng & Xiang-He Meng & Kuan-Song Wang & Hong-Mei Xiao & Hong-Wen Deng, 2021. "Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
- DonHee Lee & Seong No Yoon, 2021. "Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges," IJERPH, MDPI, vol. 18(1), pages 1-18, January.
- Dario Sipari & Betsy D. M. Chaparro-Rico & Daniele Cafolla, 2022. "SANE (Easy Gait Analysis System): Towards an AI-Assisted Automatic Gait-Analysis," IJERPH, MDPI, vol. 19(16), pages 1-27, August.
- Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
- Oded Rotem & Tamar Schwartz & Ron Maor & Yishay Tauber & Maya Tsarfati Shapiro & Marcos Meseguer & Daniella Gilboa & Daniel S. Seidman & Assaf Zaritsky, 2024. "Visual interpretability of image-based classification models by generative latent space disentanglement applied to in vitro fertilization," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
- Taneja, Anu & Arora, Anuja, 2019. "Modeling user preferences using neural networks and tensor factorization model," International Journal of Information Management, Elsevier, vol. 45(C), pages 132-148.
- Hanning Ying & Xiaoqing Liu & Min Zhang & Yiyue Ren & Shihui Zhen & Xiaojie Wang & Bo Liu & Peng Hu & Lian Duan & Mingzhi Cai & Ming Jiang & Xiangdong Cheng & Xiangyang Gong & Haitao Jiang & Jianshuai, 2024. "A multicenter clinical AI system study for detection and diagnosis of focal liver lesions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Cristian Simionescu & Adrian Iftene, 2022. "Deep Learning Research Directions in Medical Imaging," Mathematics, MDPI, vol. 10(23), pages 1-25, November.
- Aglika Kaneva, 2024. "Digitalisation in the Financial Sector," Innovative Information Technologies for Economy Digitalization (IITED), University of National and World Economy, Sofia, Bulgaria, issue 1, pages 264-274, October.
- Jingui Zhang & Chuangji Meng & Cunlu Xu & Jingyong Ma & Wei Su, 2022. "Deep Transfer Learning Method Based on Automatic Domain Alignment and Moment Matching," Mathematics, MDPI, vol. 10(14), pages 1-14, July.
- Yuming Jiang & Zhicheng Zhang & Wei Wang & Weicai Huang & Chuanli Chen & Sujuan Xi & M. Usman Ahmad & Yulan Ren & Shengtian Sang & Jingjing Xie & Jen-Yeu Wang & Wenjun Xiong & Tuanjie Li & Zhen Han & , 2023. "Biology-guided deep learning predicts prognosis and cancer immunotherapy response," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Marta Mazur & Artnora Ndokaj & Divyambika Catakapatri Venugopal & Michela Roberto & Cristina Albu & Maciej Jedliński & Silverio Tomao & Iole Vozza & Grzegorz Trybek & Livia Ottolenghi & Fabrizio Guerr, 2021. "In Vivo Imaging-Based Techniques for Early Diagnosis of Oral Potentially Malignant Disorders—Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 18(22), pages 1-22, November.
- Khalid A. Ibrahim & Kristin S. Grußmayer & Nathan Riguet & Lely Feletti & Hilal A. Lashuel & Aleksandra Radenovic, 2023. "Label-free identification of protein aggregates using deep learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Hailong He & Christine Schönmann & Mathias Schwarz & Benedikt Hindelang & Andrei Berezhnoi & Susanne Annette Steimle-Grauer & Ulf Darsow & Juan Aguirre & Vasilis Ntziachristos, 2022. "Fast raster-scan optoacoustic mesoscopy enables assessment of human melanoma microvasculature in vivo," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
More about this item
Keywords
deep learning; deep neural network; dementia; feature extraction; prediction; principal component analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:10:p:5386-:d:557111. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.