IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v63y2020ics0160791x20304942.html
   My bibliography  Save this article

A contextualized study of the usage of the Internet of things (IoTs) in smart farming in a typical Middle Eastern country within the context of Unified Theory of Acceptance and Use of Technology model (UTAUT)

Author

Listed:
  • Ronaghi, Mohammad Hossein
  • Forouharfar, Amir

Abstract

Smart Farming is the application of modern technologies, tools and gadgets for increasing the agricultural crops quality and quantity. The Internet of Things (IoT) technology has had a prominent role in the establishment of smart farming. However, the application of this technology could be hard and, in some cases, challenging for the Middle Eastern users. Therefore, the research purpose is to identify the influential factors in the adoption and then application of IoT in smart farming by farmers with a contextualized approach in Iran, a typical Middle Eastern country. Thus, the Unified Theory of Acceptance and Use of Technology (UTAUT) has contextually been used as the theoretical model of the research. The results accentuated and proved the positive impacts of performance expectancy (H1), effort expectancy (H2), social influence (H3), individual factors (H4), and facilitating conditions (H5), on the intention to use IoT technology. Ultimately, the results were indicating the significant impact of behavioral intention on the actual usage of IoT technology (H6). One of the implications of the research is for the IT policymakers in the agricultural sector in the Middle East, where water and cultivable land are two valuable but scarce economic resources. Hence, smart farming could not be promoted unless the farmers had fulfilled its prerequisite factors proposed by the research results for using the IoT technology.

Suggested Citation

  • Ronaghi, Mohammad Hossein & Forouharfar, Amir, 2020. "A contextualized study of the usage of the Internet of things (IoTs) in smart farming in a typical Middle Eastern country within the context of Unified Theory of Acceptance and Use of Technology model," Technology in Society, Elsevier, vol. 63(C).
  • Handle: RePEc:eee:teinso:v:63:y:2020:i:c:s0160791x20304942
    DOI: 10.1016/j.techsoc.2020.101415
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X20304942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2020.101415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Saedi, Karrar & Al-Emran, Mostafa & Ramayah, T. & Abusham, Eimad, 2020. "Developing a general extended UTAUT model for M-payment adoption," Technology in Society, Elsevier, vol. 62(C).
    2. Shuhaiber, Ahmed & Mashal, Ibrahim, 2019. "Understanding users’ acceptance of smart homes," Technology in Society, Elsevier, vol. 58(C).
    3. Faridi, Amir Ali & Kavoosi-Kalashami, Mohammad & Bilali, Hamid El, 2020. "Attitude components affecting adoption of soil and water conservation measures by paddy farmers in Rasht County, Northern Iran," Land Use Policy, Elsevier, vol. 99(C).
    4. Amir Forouharfar, 2020. "A contextualized study of entrepreneurship in the Arab states prior to the Arab Spring: reviewing the impact of entrepreneurship on political stability," Chapters, in: Paresha Sinha & Jenny Gibb & Michèle Akoorie & Jonathan M. Scott (ed.), Research Handbook on Entrepreneurship in Emerging Economies, chapter 3, pages 44-63, Edward Elgar Publishing.
    5. Wolfert, Sjaak & Ge, Lan & Verdouw, Cor & Bogaardt, Marc-Jeroen, 2017. "Big Data in Smart Farming – A review," Agricultural Systems, Elsevier, vol. 153(C), pages 69-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hai Hu & Andi Cao & Si Chen & Houjian Li, 2022. "Effects of Risk Perception of Pests and Diseases on Tea Famers’ Green Control Techniques Adoption," IJERPH, MDPI, vol. 19(14), pages 1-15, July.
    2. Giua, Carlo & Materia, Valentina Cristiana & Camanzi, Luca, 2022. "Smart farming technologies adoption: Which factors play a role in the digital transition?," Technology in Society, Elsevier, vol. 68(C).
    3. Mohammad Hossein Ronaghi, 2021. "Open-source software migration under sanctions conditions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1132-1145, December.
    4. Gyawali, Buddhi R. & Paudel, Krishna P. & Jean, Rosny & Banerjee, Swagata “Ban”, 2023. "Adoption of computer-based technology (CBT) in agriculture in Kentucky, USA: Opportunities and barriers," Technology in Society, Elsevier, vol. 72(C).
    5. Julio Henrique Costa Nobrega & Izabela Simon Rampasso & Vasco Sanchez-Rodrigues & Osvaldo Luiz Gonçalves Quelhas & Walter Leal Filho & Milena Pavan Serafim & Rosley Anholon, 2021. "Logistics 4.0 in Brazil: Critical Analysis and Relationships with SDG 9 Targets," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    6. Kexiao Xie & Yuerui Zhu & Yongqiang Ma & Youcheng Chen & Shuiji Chen & Zhidan Chen, 2022. "Willingness of Tea Farmers to Adopt Ecological Agriculture Techniques Based on the UTAUT Extended Model," IJERPH, MDPI, vol. 19(22), pages 1-14, November.
    7. Radhwan Sneesl & Yusmadi Yah Jusoh & Marzanah A. Jabar & Salfarina Abdullah & Umar Ali Bukar, 2022. "Factors Affecting the Adoption of IoT-Based Smart Campus: An Investigation Using Analytical Hierarchical Process (AHP)," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    8. Maria Sabbagh & Luciano Gutierrez, 2022. "Micro-Irrigation Technology Adoption in the Bekaa Valley of Lebanon: A Behavioural Model," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    9. Sirkka Schukat & Heinke Heise, 2021. "Towards an Understanding of the Behavioral Intentions and Actual Use of Smart Products among German Farmers," Sustainability, MDPI, vol. 13(12), pages 1-24, June.
    10. Ronaghi, Marzieh & Ronaghi, Mohammad Hossein, 2021. "Investigating the impact of economic, political, and social factors on augmented reality technology acceptance in agriculture (livestock farming) sector in a developing country," Technology in Society, Elsevier, vol. 67(C).
    11. Mohammad Hossein Ronaghi & Mohammad Mosakhani, 2022. "The effects of blockchain technology adoption on business ethics and social sustainability: evidence from the Middle East," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6834-6859, May.
    12. Zhou, Min & Huang, Jinlong & Wu, Kexin & Huang, Xin & Kong, Nan & Campy, Kathryn S., 2021. "Characterizing Chinese consumers’ intention to use live e-commerce shopping," Technology in Society, Elsevier, vol. 67(C).
    13. Radhwan Sneesl & Yusmadi Yah Jusoh & Marzanah A. Jabar & Salfarina Abdullah, 2022. "Revising Technology Adoption Factors for IoT-Based Smart Campuses: A Systematic Review," Sustainability, MDPI, vol. 14(8), pages 1-27, April.
    14. Rachel A. Bahn & Abed Al Kareem Yehya & Rami Zurayk, 2021. "Digitalization for Sustainable Agri-Food Systems: Potential, Status, and Risks for the MENA Region," Sustainability, MDPI, vol. 13(6), pages 1-24, March.
    15. Olga Lavrinenko & Svetlana Ignatjeva & Alina Betlej & Alina Danileviča & Vladimir Menshikov & Oleg Rybalkin, 2022. "Mobile internet in the EU: problems and perspectives," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 9(3), pages 369-383, March.
    16. Sultana, Nahida & Tamanna, Marzia, 2022. "Evaluating the Potential and Challenges of IoT in Education and Other Sectors during the COVID-19 Pandemic: The Case of Bangladesh," Technology in Society, Elsevier, vol. 68(C).
    17. Chang, Mona & Walimuni, Arachchilage C.S.M. & Kim, Min-cheol & Lim, Hwa-soon, 2022. "Acceptance of tourism blockchain based on UTAUT and connectivism theory," Technology in Society, Elsevier, vol. 71(C).
    18. Friedrich Rübcke von Veltheim & Heinke Heise, 2021. "German Farmers’ Attitudes on Adopting Autonomous Field Robots: An Empirical Survey," Agriculture, MDPI, vol. 11(3), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoffmann, Stefan & Lasarov, Wassili & Reimers, Hanna, 2022. "Carbon footprint tracking apps. What drives consumers' adoption intention?," Technology in Society, Elsevier, vol. 69(C).
    2. Giua, Carlo & Materia, Valentina Cristiana & Camanzi, Luca, 2022. "Smart farming technologies adoption: Which factors play a role in the digital transition?," Technology in Society, Elsevier, vol. 68(C).
    3. Hrosul, Viktoriia & Kruhlova, Olena & Kolesnyk, Alina, 2023. "Digitalization of the agricultural sector: the impact of ICT on the development of enterprises in Ukraine," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), December.
    4. Pigford, Ashlee-Ann E. & Hickey, Gordon M. & Klerkx, Laurens, 2018. "Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions," Agricultural Systems, Elsevier, vol. 164(C), pages 116-121.
    5. Hrosul, Viktoriia & Kruhlova, Olena & Kolesnyk, Alina, 2023. "Digitization of the Agricultural Sector: The Impact of ICT on the Development of Enterprises in Ukraine," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), January.
    6. Panos Constantinides & Ola Henfridsson & Geoffrey G. Parker, 2018. "Introduction—Platforms and Infrastructures in the Digital Age," Information Systems Research, INFORMS, vol. 29(2), pages 381-400, June.
    7. Divya Suresh & Abhishek Choudhury & Yinjia Zhang & Zhiying Zhao & Rajib Shaw, 2024. "The Role of Data-Driven Agritech Startups—The Case of India and Japan," Sustainability, MDPI, vol. 16(11), pages 1-17, May.
    8. Gansser, Oliver Alexander & Reich, Christina Stefanie, 2021. "A new acceptance model for artificial intelligence with extensions to UTAUT2: An empirical study in three segments of application," Technology in Society, Elsevier, vol. 65(C).
    9. Hidalgo, Francisco & Quiñones-Ruiz, Xiomara F. & Birkenberg, Athena & Daum, Thomas & Bosch, Christine & Hirsch, Patrick & Birner, Regina, 2023. "Digitalization, sustainability, and coffee. Opportunities and challenges for agricultural development," Agricultural Systems, Elsevier, vol. 208(C).
    10. Shahbaz, Muhammad & Gao, Changyuan & Zhai, LiLi & Shahzad, Fakhar & Khan, Imran, 2021. "Environmental air pollution management system: Predicting user adoption behavior of big data analytics," Technology in Society, Elsevier, vol. 64(C).
    11. Madhu Khanna & Shady S. Atallah & Saurajyoti Kar & Bijay Sharma & Linghui Wu & Chengzheng Yu & Girish Chowdhary & Chinmay Soman & Kaiyu Guan, 2022. "Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 924-937, November.
    12. Víctor M. Albornoz & Lia C. Araneda & Rodrigo Ortega, 2022. "Planning and scheduling of selective harvest with management zones delineation," Annals of Operations Research, Springer, vol. 316(2), pages 873-890, September.
    13. Shebanina, Olena & Burkovska, Anna & Petrenko, Vadym & Burkovska, Alla, 2023. "Economic planning at agricultural enterprises: Ukrainian experience of increasing the availability of data in the context of food security," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), December.
    14. Shen, Zhiyang & Wang, Songkai & Boussemart, Jean-Philippe & Hao, Yu, 2022. "Digital transition and green growth in Chinese agriculture," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    15. Salembier, Chloé & Segrestin, Blanche & Sinoir, Nicolas & Templier, Joseph & Weil, Benoît & Meynard, Jean-Marc, 2020. "Design of equipment for agroecology: Coupled innovation processes led by farmer-designers," Agricultural Systems, Elsevier, vol. 183(C).
    16. Pal, Debajyoti & Zhang, Xiangmin & Siyal, Saeed, 2021. "Prohibitive factors to the acceptance of Internet of Things (IoT) technology in society: A smart-home context using a resistive modelling approach," Technology in Society, Elsevier, vol. 66(C).
    17. Lavaei Adaryani, Rasool & Palouj, Mojtaba & Karbasioun, Mostafa & Asadi, Ali & Gholami, Hesamedin & Kianirad, Ali & Joodi Damirchi, Milad, 2024. "Antecedents of blockchain adoption in the poultry supply chain: An extended UTAUT model," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    18. Weiss, Daniel & Nemeczek, Fabian, 2021. "A text-based monitoring tool for the legitimacy and guidance of technological innovation systems," Technology in Society, Elsevier, vol. 66(C).
    19. Norman Siebrecht, 2020. "Sustainable Agriculture and Its Implementation Gap—Overcoming Obstacles to Implementation," Sustainability, MDPI, vol. 12(9), pages 1-27, May.
    20. Ashfield, Austen & Mullan, Conall & Jack, Claire, 2020. "Encouraging farmer participation in agricultural education and training: A Northern Ireland perspective," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 9, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:63:y:2020:i:c:s0160791x20304942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.