Assessments of GHG emission reduction scenarios of different levels and different short-term pledges through macro- and sectoral decomposition analyses
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2013.11.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Keigo Akimoto & Fuminori Sano & Junichiro Oda & Takashi Homma & Ullash Kumar Rout & Toshimasa Tomoda, 2008. "Global emission reductions through a sectoral intensity target scheme," Climate Policy, Taylor & Francis Journals, vol. 8(sup1), pages 46-59, December.
- Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015.
"Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals,"
Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
- Keywan Riahi & Elmar Kriegler & Nils Johnson & Christoph Bertram & Michel G. J. den Elzen & Jiyong Eom & Michiel Schaeffer & Jae Edmonds & Morna Isaac & Volker Krey & Thomas Longden & Gunnar Luderer &, 2015. "Locked into Copenhagen pledges -- Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Post-Print halshs-00962366, HAL.
- Oda, Junichiro & Akimoto, Keigo & Tomoda, Toshimasa & Nagashima, Miyuki & Wada, Kenichi & Sano, Fuminori, 2012. "International comparisons of energy efficiency in power, steel, and cement industries," Energy Policy, Elsevier, vol. 44(C), pages 118-129.
- Oda, Junichiro & Akimoto, Keigo & Sano, Fuminori & Tomoda, Toshimasa, 2007. "Diffusion of energy efficient technologies and CO2 emission reductions in iron and steel sector," Energy Economics, Elsevier, vol. 29(4), pages 868-888, July.
- Detlef Vuuren & Keywan Riahi, 2011. "The relationship between short-term emissions and long-term concentration targets," Climatic Change, Springer, vol. 104(3), pages 793-801, February.
- Akimoto, Keigo & Sano, Fuminori & Homma, Takashi & Oda, Junichiro & Nagashima, Miyuki & Kii, Masanobu, 2010. "Estimates of GHG emission reduction potential by country, sector, and cost," Energy Policy, Elsevier, vol. 38(7), pages 3384-3393, July.
- Wada, Kenichi & Sano, Fuminori & Akimoto, Keigo & Homma, Takashi, 2012. "Assessment of Copenhagen pledges with long-term implications," Energy Economics, Elsevier, vol. 34(S3), pages 481-486.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Florian Leblanc & Ruben Bibas & Silvana Mima & Matteo Muratori & Shogo Sakamoto & Fuminori Sano & Nico Bauer & Vassilis Daioglou & Shinichiro Fujimori & Matthew J Gidden & Estsushi Kato & Steven K Ros, 2022. "The contribution of bioenergy to the decarbonization of transport: a multi-model assessment," Post-Print hal-03558507, HAL.
- Wang, Hui & Li, Rupeng & Zhang, Ning & Zhou, Peng & Wang, Qiang, 2020. "Assessing the role of technology in global manufacturing energy intensity change: A production-theoretical decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
- Wenhui Tian & Pascal da Costa & Jean-Claude Bocquet, 2015. "Inequalities of Sectors CO 2 emissions in China, USA and France, 2010-2050," Working Papers hal-01219769, HAL.
- Florian Leblanc & Ruben Bibas & Silvana Mima & Matteo Muratori & Shogo Sakamoto & Fuminori Sano & Nico Bauer & Vassilis Daioglou & Shinichiro Fujimori & Matthew J. Gidden & Estsushi Kato & Steven K. R, 2022. "The contribution of bioenergy to the decarbonization of transport: a multi-model assessment," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
- Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015.
"Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals,"
Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
- Keywan Riahi & Elmar Kriegler & Nils Johnson & Christoph Bertram & Michel G. J. den Elzen & Jiyong Eom & Michiel Schaeffer & Jae Edmonds & Morna Isaac & Volker Krey & Thomas Longden & Gunnar Luderer &, 2015. "Locked into Copenhagen pledges -- Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Post-Print halshs-00962366, HAL.
- Nico Bauer & Steven K. Rose & Shinichiro Fujimori & Detlef P. Vuuren & John Weyant & Marshall Wise & Yiyun Cui & Vassilis Daioglou & Matthew J. Gidden & Etsushi Kato & Alban Kitous & Florian Leblanc &, 2020. "Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison," Climatic Change, Springer, vol. 163(3), pages 1553-1568, December.
- Child, Michael & Breyer, Christian, 2017. "Transition and transformation: A review of the concept of change in the progress towards future sustainable energy systems," Energy Policy, Elsevier, vol. 107(C), pages 11-26.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Flues, Florens & Rübbelke, Dirk & Vögele, Stefan, 2013.
"Energy Efficiency and Industrial Output: The Case of the Iron and Steel Industry,"
Energy: Resources and Markets
162379, Fondazione Eni Enrico Mattei (FEEM).
- Flues, Florens & Rübbelke, Dirk & Vögele, Stefan, 2013. "Energy efficiency and industrial output: The case of the iron and steel industry," ZEW Discussion Papers 13-101, ZEW - Leibniz Centre for European Economic Research.
- Florens Flues & Dirk Rübbelke & Stefan Vögele, 2013. "Energy Efficiency and Industrial Output: The Case of the Iron and Steel Industry," Working Papers 2013.96, Fondazione Eni Enrico Mattei.
- Wada, Kenichi & Akimoto, Keigo & Sano, Fuminori & Oda, Junichiro & Homma, Takashi, 2012. "Energy efficiency opportunities in the residential sector and their feasibility," Energy, Elsevier, vol. 48(1), pages 5-10.
- Oshiro, Ken & Fujimori, Shinichiro, 2022. "Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals," Applied Energy, Elsevier, vol. 313(C).
- Wada, Kenichi & Sano, Fuminori & Akimoto, Keigo & Homma, Takashi, 2012. "Assessment of Copenhagen pledges with long-term implications," Energy Economics, Elsevier, vol. 34(S3), pages 481-486.
- Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
- Stefan Vögele & Dirk Rübbelke & Kristina Govorukha & Matthias Grajewski, 2020. "Socio-technical scenarios for energy-intensive industries: the future of steel production in Germany," Climatic Change, Springer, vol. 162(4), pages 1763-1778, October.
- Oshiro, Ken & Fujimori, Shinichiro & Ochi, Yuki & Ehara, Tomoki, 2021. "Enabling energy system transition toward decarbonization in Japan through energy service demand reduction," Energy, Elsevier, vol. 227(C).
- Tokimatsu, Koji & Konishi, Satoshi & Ishihara, Keiichi & Tezuka, Tetsuo & Yasuoka, Rieko & Nishio, Masahiro, 2016. "Role of innovative technologies under the global zero emissions scenarios," Applied Energy, Elsevier, vol. 162(C), pages 1483-1493.
- Vögele, Stefan & Grajewski, Matthias & Govorukha, Kristina & Rübbelke, Dirk, 2020. "Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development," Applied Energy, Elsevier, vol. 264(C).
- Fragkos, Panagiotis & Tasios, Nikos & Paroussos, Leonidas & Capros, Pantelis & Tsani, Stella, 2017. "Energy system impacts and policy implications of the European Intended Nationally Determined Contribution and low-carbon pathway to 2050," Energy Policy, Elsevier, vol. 100(C), pages 216-226.
- Akimoto, Keigo & Sano, Fuminori & Homma, Takashi & Oda, Junichiro & Nagashima, Miyuki & Kii, Masanobu, 2010. "Estimates of GHG emission reduction potential by country, sector, and cost," Energy Policy, Elsevier, vol. 38(7), pages 3384-3393, July.
- Keigo Akimoto & Fuminori Sano & Ayami Hayashi & Takashi Homma & Junichiro Oda & Kenichi Wada & Miyuki Nagashima & Kohko Tokushige & Toshimasa Tomoda, 2012. "Consistent assessments of pathways toward sustainable development and climate stabilization," Natural Resources Forum, Blackwell Publishing, vol. 36(4), pages 231-244, November.
- Miha Kovačič & Klemen Stopar & Robert Vertnik & Božidar Šarler, 2019. "Comprehensive Electric Arc Furnace Electric Energy Consumption Modeling: A Pilot Study," Energies, MDPI, vol. 12(11), pages 1-13, June.
- Jianlei Lang & Shuiyuan Cheng & Ying Zhou & Beibei Zhao & Haiyan Wang & Shujing Zhang, 2013. "Energy and Environmental Implications of Hybrid and Electric Vehicles in China," Energies, MDPI, vol. 6(5), pages 1-23, May.
- Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2010.
"Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model,"
Environment and Development Economics, Cambridge University Press, vol. 15(5), pages 515-533, October.
- Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2008. "Climate Change Feedback on Economic Growth: Explorations with a Dynamic General Equilibrium Model," Conference papers 331756, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
- Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2009. "Climate Change Feedback on Economic Growth: Explorations with a Dynamic General Equilibrium Model," Sustainable Development Papers 52339, Fondazione Eni Enrico Mattei (FEEM).
- Fabio Eboli & Ramiro Parrado & Roberto Roson, 2009. "Climate Change Feedback on Economic Growth: Explorations with a Dynamic General Equilibrium Model," Working Papers 2009.43, Fondazione Eni Enrico Mattei.
- Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018.
"Pathways toward zero-carbon electricity required for climate stabilization,"
Applied Energy, Elsevier, vol. 225(C), pages 884-901.
- Richard Audoly & Adrien Vogt-Schilb & Céline Guivarch, 2014. "Pathways toward Zero-Carbon Electricity Required for Climate Stabilization," Working Papers hal-01079837, HAL.
- Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2017. "Pathways toward Zero-Carbon Electricity Required for Climate Stabilization," IDB Publications (Working Papers) 8498, Inter-American Development Bank.
- Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Celine, 2014. "Pathways toward zero-carbon electricity required for climate stabilization," Policy Research Working Paper Series 7075, The World Bank.
- Richard Audoly & Adrien Vogt-Schilb & Céline Guivarch & Alexander Pfeiffer, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Post-Print halshs-01804564, HAL.
- Richard Audoly & Adrien Vogt-Schilb & Céline Guivarch, 2014. "Pathways toward Zero-Carbon Electricity Required for Climate Stabilization," CIRED Working Papers hal-01079837, HAL.
- Dioha, Michael O. & Kumar, Atul, 2020. "Exploring the energy system impacts of Nigeria's Nationally Determined Contributions and low-carbon transition to mid-century," Energy Policy, Elsevier, vol. 144(C).
- Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
- Francesco Bosello & Carlo Orecchia & David A. Raitzer, 2016.
"Decarbonization Pathways in Southeast Asia: New Results for Indonesia, Malaysia, Philippines, Thailand and Viet Nam,"
Working Papers
2016.75, Fondazione Eni Enrico Mattei.
- Bosello, Francesco & Orecchia, Carlo & Raitzer, David A., 2016. "Decarbonization Pathways in Southeast Asia: New Results for Indonesia, Malaysia, Philippines, Thailand and Viet Nam," MITP: Mitigation, Innovation and Transformation Pathways 250260, Fondazione Eni Enrico Mattei (FEEM).
- Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
More about this item
Keywords
Climate change mitigation; Decomposition analysis; Energy end-use sector; Global energy system model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:90:y:2015:i:pa:p:153-165. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.