IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v208y2024ics0040162524004864.html
   My bibliography  Save this article

Analysis of user acceptance of information and communications technology for electrical safety inspection based on a choice experiment and hierarchical Bayesian model

Author

Listed:
  • Lee, Hwarang
  • Koo, Yoonmo

Abstract

The development of information and communications technology has resulted in changes in electrical safety inspection. Electrical safety inspectors plan to introduce smart devices that detect causes of extensive electrical fires in real time without problems of power disconnections and on-site visits. However, smart inspection is expected to encounter acceptance issues because users are unaccustomed to it and obligated to pay additional costs for device installation and data communications. This study aims to investigate smart inspection acceptance using survey data. A hierarchical Bayesian model is employed to explore the effects of users' characteristics on its acceptance. The respondents prefer attributes of smart inspection to those of the prevailing method of on-site inspection, excluding monthly inspection costs. They prefer more frequent and extensive inspections, and prefer to avoid power disconnections and physical interaction. Accordingly, the government should inform users that smart inspection is convenient and accurate. It is also attractive to users who wish to avoid on-site visits because of privacy issues. The acceptance rate can increase if the government reduces inspection costs using the existing smart devices and communications infrastructure, and offers real-time electrical safety information using smart phones and in-home displays.

Suggested Citation

  • Lee, Hwarang & Koo, Yoonmo, 2024. "Analysis of user acceptance of information and communications technology for electrical safety inspection based on a choice experiment and hierarchical Bayesian model," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:tefoso:v:208:y:2024:i:c:s0040162524004864
    DOI: 10.1016/j.techfore.2024.123688
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162524004864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2024.123688?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chou, Jui-Sheng & Gusti Ayu Novi Yutami, I, 2014. "Smart meter adoption and deployment strategy for residential buildings in Indonesia," Applied Energy, Elsevier, vol. 128(C), pages 336-349.
    2. Ruokamo, Enni & Kopsakangas-Savolainen, Maria & Meriläinen, Teemu & Svento, Rauli, 2019. "Towards flexible energy demand – Preferences for dynamic contracts, services and emissions reductions," Energy Economics, Elsevier, vol. 84(C).
    3. Perri, Cecilia & Giglio, Carlo & Corvello, Vincenzo, 2020. "Smart users for smart technologies: Investigating the intention to adopt smart energy consumption behaviors," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    4. Patricia Baudier & Chantal Ammi & Matthieu Deboeuf-Rouchon, 2020. "Smart home : highly-educated students' acceptance," Post-Print hal-02292941, HAL.
    5. Lim, Keumju & Lee, Jongsu & Lee, Hyunjoo, 2021. "Implementing automated residential demand response in South Korea: Consumer preferences and market potential," Utilities Policy, Elsevier, vol. 70(C).
    6. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, November.
    7. Julsrud, Dr. Tom Erik & Krogstad, Dr. Julie Runde, 2020. "Is there enough trust for the smart city? exploring acceptance for use of mobile phone data in oslo and tallinn," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    8. Swantje Sundt & Katrin Rehdanz & Jürgen Meyerhoff, 2020. "Consumers’ Willingness to Accept Time-of-Use Tariffs for Shifting Electricity Demand," Energies, MDPI, vol. 13(8), pages 1-17, April.
    9. Sheikh Kamran Abid & Noralfishah Sulaiman & Shiau Wei Chan & Umber Nazir & Muhammad Abid & Heesup Han & Antonio Ariza-Montes & Alejandro Vega-Muñoz, 2021. "Toward an Integrated Disaster Management Approach: How Artificial Intelligence Can Boost Disaster Management," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    10. Richter, Laura-Lucia & Pollitt, Michael G., 2018. "Which smart electricity service contracts will consumers accept? The demand for compensation in a platform market," Energy Economics, Elsevier, vol. 72(C), pages 436-450.
    11. Fettermann, Diego Castro & Cavalcante, Caroline Gobbo Sá & Ayala, Néstor Fabián & Avalone, Marianne Costa, 2020. "Configuration of a smart meter for Brazilian customers," Energy Policy, Elsevier, vol. 139(C).
    12. Baudier, Patricia & Ammi, Chantal & Deboeuf-Rouchon, Matthieu, 2020. "Smart home: Highly-educated students' acceptance," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    13. Kaufmann, Simon & Künzel, Karoline & Loock, Moritz, 2013. "Customer value of smart metering: Explorative evidence from a choice-based conjoint study in Switzerland," Energy Policy, Elsevier, vol. 53(C), pages 229-239.
    14. Chankook Park & Min Jeong, 2021. "A Study of Factors Influencing on Passive and Active Acceptance of Home Energy Management Services with Internet of Things," Energies, MDPI, vol. 14(12), pages 1-17, June.
    15. Byun, Hyunsuk & Lee, Chul-Yong, 2017. "Analyzing Korean consumers’ latent preferences for electricity generation sources with a hierarchical Bayesian logit model in a discrete choice experiment," Energy Policy, Elsevier, vol. 105(C), pages 294-302.
    16. Srivastava, A. & Van Passel, S. & Valkering, P. & Laes, E.J.W., 2021. "Power outages and bill savings: A choice experiment on residential demand response acceptability in Delhi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Srivastava, Aman & Van Passel, Steven & Kessels, Roselinde & Valkering, Pieter & Laes, Erik, 2020. "Reducing winter peaks in electricity consumption: A choice experiment to structure demand response programs," Energy Policy, Elsevier, vol. 137(C).
    18. Gimpel, Henner & Graf, Vanessa & Graf-Drasch, Valerie, 2020. "A comprehensive model for individuals’ acceptance of smart energy technology – A meta-analysis," Energy Policy, Elsevier, vol. 138(C).
    19. Pepermans, Guido, 2014. "Valuing smart meters," Energy Economics, Elsevier, vol. 45(C), pages 280-294.
    20. Allenby, Greg M. & Rossi, Peter E., 1998. "Marketing models of consumer heterogeneity," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 57-78, November.
    21. Shin, Jungwoo & Park, Yuri & Lee, Daeho, 2018. "Who will be smart home users? An analysis of adoption and diffusion of smart homes," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 246-253.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tu, Gengyang & Faure, Corinne & Schleich, Joachim & Guetlein, Marie-Charlotte, 2021. "The heat is off! The role of technology attributes and individual attitudes in the diffusion of Smart thermostats – findings from a multi-country survey," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    2. Hye-Jeong Lee & Beom Jin Chung & Sung-Yoon Huh, 2023. "Consumer Preferences for Smart Energy Services Based on AMI Data in the Power Sector," Energies, MDPI, vol. 16(9), pages 1-20, May.
    3. Broberg, Thomas & Daniel, Aemiro Melkamu & Persson, Lars, 2021. "Household preferences for load restrictions: Is there an effect of pro-environmental framing?," Energy Economics, Elsevier, vol. 97(C).
    4. Große-Kreul, Felix, 2022. "What will drive household adoption of smart energy? Insights from a consumer acceptance study in Germany," Utilities Policy, Elsevier, vol. 75(C).
    5. Neves, C. & Oliveira, T. & Santini, F., 2022. "Sustainable technologies adoption research: A weight and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Swantje Sundt & Katrin Rehdanz & Jürgen Meyerhoff, 2020. "Consumers’ Willingness to Accept Time-of-Use Tariffs for Shifting Electricity Demand," Energies, MDPI, vol. 13(8), pages 1-17, April.
    7. Bernadeta Gołębiowska, 2020. "Preferences for demand side management—a review of choice experiment studies," Working Papers 2020-05, Faculty of Economic Sciences, University of Warsaw.
    8. Kim, Kyungah & Choi, Jihye & Lee, Jihee & Lee, Jongsu & Kim, Junghun, 2023. "Public preferences and increasing acceptance of time-varying electricity pricing for demand side management in South Korea," Energy Economics, Elsevier, vol. 119(C).
    9. Byun, Hyunsuk & Shin, Jungwoo & Lee, Chul-Yong, 2018. "Using a discrete choice experiment to predict the penetration possibility of environmentally friendly vehicles," Energy, Elsevier, vol. 144(C), pages 312-321.
    10. Pal, Debajyoti & Zhang, Xiangmin & Siyal, Saeed, 2021. "Prohibitive factors to the acceptance of Internet of Things (IoT) technology in society: A smart-home context using a resistive modelling approach," Technology in Society, Elsevier, vol. 66(C).
    11. Struckell, Elisabeth & Ojha, Divesh & Patel, Pankaj C. & Dhir, Amandeep, 2021. "Ecological determinants of smart home ecosystems: A coopetition framework," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    12. Nakai, Miwa & von Loessl, Victor & Wetzel, Heike, 2024. "Preferences for dynamic electricity tariffs: A comparison of households in Germany and Japan," Ecological Economics, Elsevier, vol. 223(C).
    13. von Loessl, Victor, 2023. "Smart meter-related data privacy concerns and dynamic electricity tariffs: Evidence from a stated choice experiment," Energy Policy, Elsevier, vol. 180(C).
    14. Ferreira, Laura & Oliveira, Tiago & Neves, Catarina, 2023. "Consumer's intention to use and recommend smart home technologies: The role of environmental awareness," Energy, Elsevier, vol. 263(PC).
    15. Strong, Derek Ryan, 2017. "The Early Diffusion of Smart Meters in the US Electric Power Industry," Thesis Commons 7zprk, Center for Open Science.
    16. Srivastava, Aman & Van Passel, Steven & Kessels, Roselinde & Valkering, Pieter & Laes, Erik, 2020. "Reducing winter peaks in electricity consumption: A choice experiment to structure demand response programs," Energy Policy, Elsevier, vol. 137(C).
    17. Ladenburg, Jacob & Jensen, Kirsten Lund & Lodahl, Christa & Keles, Dogan, 2022. "Testing for non-linear willingness to accept compensation for controlled electricity switch-offs using choice experiments," Energy, Elsevier, vol. 238(PB).
    18. Giovanni Baldi & Antonietta Megaro & Luca Carrubbo, 2022. "Small-Town Citizens’ Technology Acceptance of Smart and Sustainable City Development," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    19. Mark Tocock & Dugald Tinch & Darla Hatton MacDonald & John M. Rose, 2023. "Managing the energy trilemma of reliability, affordability and renewables: Assessing consumer demands with discrete choice experiments," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(2), pages 155-175, April.
    20. Hannu Huuki & Rauli Svento, 2020. "Unobserved preferences and dynamic platform pricing under positive network externality," Netnomics, Springer, vol. 21(1), pages 37-58, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:208:y:2024:i:c:s0040162524004864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.