IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3631-d577478.html
   My bibliography  Save this article

A Study of Factors Influencing on Passive and Active Acceptance of Home Energy Management Services with Internet of Things

Author

Listed:
  • Chankook Park

    (Energy Industry Research Group, Korea Energy Economics Institute (KEEI), Ulsan 405-11, Korea)

  • Min Jeong

    (Energy Industry Research Group, Korea Energy Economics Institute (KEEI), Ulsan 405-11, Korea)

Abstract

Since awareness of the influence of home energy management services (HEMS) with Internet of things (IoT) has grown, the study on the acceptance of IoT services has been expanded. Previous studies, however, have not paid attention to the acceptance itself, focusing only on factors affecting the acceptance. This study attempts to draw meaningful implications by exploring the relationships between the acceptance and the factors affecting it with distinctions between passive acceptance and active acceptance. This study analyzed the ordinal logistic regression models based on a survey of 909 adults 19 years of age and older in Korea on HEMS with IoT. In addition, we attempt the ordinal forest to increase the reliability of the research results. As a result, this study showed that consumers’ perception of usefulness was noticeably important to enhance active acceptance and that those who had high sensitivity to new technology acceptance showed high active acceptance, and older women had higher active acceptance. This study might contribute to the research on IoT acceptance in the energy management sector by classifying the acceptance into active acceptance and passive acceptance beyond the framework of setting the acceptance as a single variable.

Suggested Citation

  • Chankook Park & Min Jeong, 2021. "A Study of Factors Influencing on Passive and Active Acceptance of Home Energy Management Services with Internet of Things," Energies, MDPI, vol. 14(12), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3631-:d:577478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3631/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3631/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Luisa Lima & Julie Barnett & Jorge Vala, 2005. "Risk Perception and Technological Development at a Societal Level," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1229-1239, October.
    2. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    3. Sauter, Raphael & Watson, Jim, 2007. "Strategies for the deployment of micro-generation: Implications for social acceptance," Energy Policy, Elsevier, vol. 35(5), pages 2770-2779, May.
    4. Park, Chan-Kook & Kim, Hyun-Jae & Kim, Yang-Soo, 2014. "A study of factors enhancing smart grid consumer engagement," Energy Policy, Elsevier, vol. 72(C), pages 211-218.
    5. Mei‐Chih Meg Tseng & Yi‐Ping Lin & Fu‐Chang Hu & Tsun‐Jen Cheng, 2013. "Risks Perception of Electromagnetic Fields in Taiwan: The Influence of Psychopathology and the Degree of Sensitivity to Electromagnetic Fields," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 2002-2012, November.
    6. Jinsoo Park & Dongwon Lee & Joongho Ahn, 2004. "Risk-Focused E-Commerce Adoption Model: A Cross-Country Study," Journal of Global Information Technology Management, Taylor & Francis Journals, vol. 7(2), pages 6-30, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Imre Kovách & Boldizsár Gergely Megyesi, 2023. "Energy Use Research in the Social Sciences–Introduction to a Research Topic," Energies, MDPI, vol. 16(8), pages 1-8, April.
    2. Thipnapa Huansuriya & Kris Ariyabuddhiphongs, 2023. "Predicting Residential Photovoltaic Adoption Intention of Potential Prosumers in Thailand: A Theory of Planned Behavior Model," Energies, MDPI, vol. 16(17), pages 1-20, August.
    3. Wioletta Knapik & Magdalena Katarzyna Kowalska & Monika Odlanicka-Poczobutt & Marek Kasperek, 2022. "The Internet of Things through Internet Access Using an Electrical Power Transmission System (Power Line Communication) to Improve Digital Competencies and Quality of Life of Selected Social Groups in," Energies, MDPI, vol. 15(14), pages 1-27, July.
    4. Lee, Hwarang & Koo, Yoonmo, 2024. "Analysis of user acceptance of information and communications technology for electrical safety inspection based on a choice experiment and hierarchical Bayesian model," Technological Forecasting and Social Change, Elsevier, vol. 208(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christine Milchram & Geerten Van de Kaa & Neelke Doorn & Rolf Künneke, 2018. "Moral Values as Factors for Social Acceptance of Smart Grid Technologies," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
    2. Heagle, A.L.B. & Naterer, G.F. & Pope, K., 2011. "Small wind turbine energy policies for residential and small business usage in Ontario, Canada," Energy Policy, Elsevier, vol. 39(4), pages 1988-1999, April.
    3. Yuan, Xueliang & Zuo, Jian & Ma, Chunyuan, 2011. "Social acceptance of solar energy technologies in China--End users' perspective," Energy Policy, Elsevier, vol. 39(3), pages 1031-1036, March.
    4. Liu, Wenling & Wang, Can & Mol, Arthur P.J., 2013. "Rural public acceptance of renewable energy deployment: The case of Shandong in China," Applied Energy, Elsevier, vol. 102(C), pages 1187-1196.
    5. Yazdanpanah, Masoud & Komendantova, Nadejda & Ardestani, Roshanak Shafiei, 2015. "Governance of energy transition in Iran: Investigating public acceptance and willingness to use renewable energy sources through socio-psychological model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 565-573.
    6. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    7. Ellabban, Omar & Abu-Rub, Haitham, 2016. "Smart grid customers' acceptance and engagement: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1285-1298.
    8. von Wirth, Timo & Gislason, Linda & Seidl, Roman, 2018. "Distributed energy systems on a neighborhood scale: Reviewing drivers of and barriers to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2618-2628.
    9. Zaunbrecher, Barbara S. & Linzenich, Anika & Ziefle, Martina, 2017. "A mast is a mast is a mast…? Comparison of preferences for location-scenarios of electricity pylons and wind power plants using conjoint analysis," Energy Policy, Elsevier, vol. 105(C), pages 429-439.
    10. Boon, Frank Pieter & Dieperink, Carel, 2014. "Local civil society based renewable energy organisations in the Netherlands: Exploring the factors that stimulate their emergence and development," Energy Policy, Elsevier, vol. 69(C), pages 297-307.
    11. Sardianou, E. & Genoudi, P., 2013. "Which factors affect the willingness of consumers to adopt renewable energies?," Renewable Energy, Elsevier, vol. 57(C), pages 1-4.
    12. Fobissie, Elsie N., 2019. "The role of environmental values and political ideology on public support for renewable energy policy in Ottawa, Canada," Energy Policy, Elsevier, vol. 134(C).
    13. Azadian, Farshad & Radzi, M.A.M., 2013. "A general approach toward building integrated photovoltaic systems and its implementation barriers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 527-538.
    14. Mundaca, Luis & Busch, Henner & Schwer, Sophie, 2018. "‘Successful’ low-carbon energy transitions at the community level? An energy justice perspective," Applied Energy, Elsevier, vol. 218(C), pages 292-303.
    15. Thiam, Djiby Racine, 2011. "An energy pricing scheme for the diffusion of decentralized renewable technology investment in developing countries," Energy Policy, Elsevier, vol. 39(7), pages 4284-4297, July.
    16. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    17. Peura, Pekka, 2013. "From Malthus to sustainable energy—Theoretical orientations to reforming the energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 309-327.
    18. Ponce, Pedro & Polasko, Kenneth & Molina, Arturo, 2016. "End user perceptions toward smart grid technology: Acceptance, adoption, risks, and trust," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 587-598.
    19. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    20. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3631-:d:577478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.