IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v199y2024ics004016252300728x.html
   My bibliography  Save this article

Effectiveness of tutoring at school: A machine learning evaluation

Author

Listed:
  • Ballestar, María Teresa
  • Mir, Miguel Cuerdo
  • Pedrera, Luis Miguel Doncel
  • Sainz, Jorge

Abstract

Tutoring programs are effective in reducing school failures among at-risk students. However, there is still room for improvement in maximising the social returns they provide on investments.

Suggested Citation

  • Ballestar, María Teresa & Mir, Miguel Cuerdo & Pedrera, Luis Miguel Doncel & Sainz, Jorge, 2024. "Effectiveness of tutoring at school: A machine learning evaluation," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:tefoso:v:199:y:2024:i:c:s004016252300728x
    DOI: 10.1016/j.techfore.2023.123043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004016252300728X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2023.123043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bettinger, Eric & Ludvigsen, Sten & Rege, Mari & Solli, Ingeborg F. & Yeager, David, 2018. "Increasing perseverance in math: Evidence from a field experiment in Norway," Journal of Economic Behavior & Organization, Elsevier, vol. 146(C), pages 1-15.
    2. F. Murtagh & M. Hernández-Pajares, 1995. "The Kohonen self-organizing map method: An assessment," Journal of Classification, Springer;The Classification Society, vol. 12(2), pages 165-190, September.
    3. Mahantesh Halagatti & Soumya Gadag & Shashidhar Mahantshetti & Chetan V. Hiremath & Dhanashree Tharkude & Vinayak Banakar, 2023. "Artificial Intelligence: The New Tool of Disruption in Educational Performance Assessment," Contemporary Studies in Economic and Financial Analysis, in: Smart Analytics, Artificial Intelligence and Sustainable Performance Management in a Global Digitalised Economy, volume 110, pages 261-287, Emerald Group Publishing Limited.
    4. Carlana, Michela & La Ferrara, Eliana, 2021. "Apart but Connected: Online Tutoring and Student Outcomes during the COVID-19 Pandemic," CEPR Discussion Papers 15761, C.E.P.R. Discussion Papers.
    5. de Ree, Joppe & Maggioni, Mario A. & Paulle, Bowen & Rossignoli, Domenico & Ruijs, Nienke & Walentek, Dawid, 2023. "Closing the income-achievement gap? Experimental evidence from high-dosage tutoring in Dutch primary education," Economics of Education Review, Elsevier, vol. 94(C).
    6. Pan, Zheng & Lien, Donald & Wang, Hao, 2022. "Peer effects and shadow education," Economic Modelling, Elsevier, vol. 111(C).
    7. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    8. Carolyn J. Heinrich & Patricia Burch & Annalee Good & Rudy Acosta & Huiping Cheng & Marcus Dillender & Christi Kirshbaum & Hiren Nisar & Mary Stewart, 2014. "Improving the Implementation and Effectiveness of Out‐of‐School‐Time Tutoring," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 33(2), pages 471-494, March.
    9. Damgaard, Mette Trier & Nielsen, Helena Skyt, 2018. "Nudging in education," Economics of Education Review, Elsevier, vol. 64(C), pages 313-342.
    10. Jens Dietrichson & Ida Lykke Kristiansen & Bjørn A. Viinholt, 2020. "Universal Preschool Programs And Long‐Term Child Outcomes: A Systematic Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(5), pages 1007-1043, December.
    11. Ballestar, María Teresa & Grau-Carles, Pilar & Sainz, Jorge, 2018. "Customer segmentation in e-commerce: Applications to the cashback business model," Journal of Business Research, Elsevier, vol. 88(C), pages 407-414.
    12. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    13. Garbe, Jan-Nicolas & Richter, Nicole Franziska, 2009. "Causal analysis of the internationalization and performance relationship based on neural networks -- advocating the transnational structure," Journal of International Management, Elsevier, vol. 15(4), pages 413-431, December.
    14. Matthew A. Kraft & Alexander J. Bolves & Noelle M. Hurd, 2023. "How Informal Mentoring by Teachers, Counselors, and Coaches Supports Students’ Long-Run Academic Success," NBER Working Papers 31257, National Bureau of Economic Research, Inc.
    15. Ballestar, María Teresa & García-Lazaro, Aida & Sainz, Jorge & Sanz, Ismael, 2022. "Why is your company not robotic? The technology and human capital needed by firms to become robotic," Journal of Business Research, Elsevier, vol. 142(C), pages 328-343.
    16. Roland G. Fryer Jr. & Meghan Howard-Noveck, 2020. "High-Dosage Tutoring and Reading Achievement: Evidence from New York City," Journal of Labor Economics, University of Chicago Press, vol. 38(2), pages 421-452.
    17. Kraft, Matthew A. & Bolves, Alexander J. & Hurd, Noelle M., 2023. "How informal mentoring by teachers, counselors, and coaches supports students' long-run academic success," Economics of Education Review, Elsevier, vol. 95(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ballestar, María Teresa & García-Lazaro, Aida & Sainz, Jorge & Sanz, Ismael, 2022. "Why is your company not robotic? The technology and human capital needed by firms to become robotic," Journal of Business Research, Elsevier, vol. 142(C), pages 328-343.
    2. Harry Anthony Patrinos, 2022. "Learning loss and learning recovery," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 49(2), pages 183-188, June.
    3. Ay, Jean-Sauveur & Le Gallo, Julie, 2021. "The Signaling Values of Nested Wine Names," Working Papers 321851, American Association of Wine Economists.
    4. Chen, Ruoyu & Jiang, Hanchen & Quintero, Luis E., 2023. "Measuring the value of rent stabilization and understanding its implications for racial inequality: Evidence from New York City," Regional Science and Urban Economics, Elsevier, vol. 103(C).
    5. Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," MPRA Paper 110703, University Library of Munich, Germany.
    6. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    8. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    9. Jesus Fernandez-Villaverde, 2020. "Simple Rules for a Complex World with Arti?cial Intelligence," PIER Working Paper Archive 20-010, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    10. Blankenship, Brian & Aklin, Michaël & Urpelainen, Johannes & Nandan, Vagisha, 2022. "Jobs for a just transition: Evidence on coal job preferences from India," Energy Policy, Elsevier, vol. 165(C).
    11. Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
    12. Askitas, Nikos, 2024. "A Hands-on Machine Learning Primer for Social Scientists: Math, Algorithms and Code," IZA Discussion Papers 17014, Institute of Labor Economics (IZA).
    13. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    14. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    15. Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
    16. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    17. Mona Aghdaee & Bonny Parkinson & Kompal Sinha & Yuanyuan Gu & Rajan Sharma & Emma Olin & Henry Cutler, 2022. "An examination of machine learning to map non‐preference based patient reported outcome measures to health state utility values," Health Economics, John Wiley & Sons, Ltd., vol. 31(8), pages 1525-1557, August.
    18. Hector F. Calvo-Pardo & Tullio Mancini & Jose Olmo, 2020. "Neural Network Models for Empirical Finance," JRFM, MDPI, vol. 13(11), pages 1-22, October.
    19. Cockx, Bart & Lechner, Michael & Bollens, Joost, 2023. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Labour Economics, Elsevier, vol. 80(C).
    20. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:199:y:2024:i:c:s004016252300728x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.