IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v12y1995i2p165-190.html
   My bibliography  Save this article

The Kohonen self-organizing map method: An assessment

Author

Listed:
  • F. Murtagh
  • M. Hernández-Pajares

Abstract

No abstract is available for this item.

Suggested Citation

  • F. Murtagh & M. Hernández-Pajares, 1995. "The Kohonen self-organizing map method: An assessment," Journal of Classification, Springer;The Classification Society, vol. 12(2), pages 165-190, September.
  • Handle: RePEc:spr:jclass:v:12:y:1995:i:2:p:165-190
    DOI: 10.1007/BF03040854
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF03040854
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF03040854?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Glenn Milligan & Martha Cooper, 1988. "A study of standardization of variables in cluster analysis," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 181-204, September.
    2. J. A. Hartigan & M. A. Wong, 1979. "A K‐Means Clustering Algorithm," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(1), pages 100-108, March.
    3. William T. McCormick & Paul J. Schweitzer & Thomas W. White, 1972. "Problem Decomposition and Data Reorganization by a Clustering Technique," Operations Research, INFORMS, vol. 20(5), pages 993-1009, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eline Auwera & Bert D’Espallier & Roy Mersland, 2024. "Achieving Double Bottom-Line Performance in Hybrid Organisations: A Machine-Learning Approach," Journal of Business Ethics, Springer, vol. 190(3), pages 625-647, March.
    2. Ballestar, María Teresa & Mir, Miguel Cuerdo & Pedrera, Luis Miguel Doncel & Sainz, Jorge, 2024. "Effectiveness of tutoring at school: A machine learning evaluation," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    3. Melody Y. Kiang & Ajith Kumar, 2001. "An Evaluation of Self-Organizing Map Networks as a Robust Alternative to Factor Analysis in Data Mining Applications," Information Systems Research, INFORMS, vol. 12(2), pages 177-194, June.
    4. Niels Waller & Heather Kaiser & Janine Illian & Mike Manry, 1998. "A comparison of the classification capabilities of the 1-dimensional kohonen neural network with two pratitioning and three hierarchical cluster analysis algorithms," Psychometrika, Springer;The Psychometric Society, vol. 63(1), pages 5-22, March.
    5. Dzemyda, Gintautas, 2001. "Visualization of a set of parameters characterized by their correlation matrix," Computational Statistics & Data Analysis, Elsevier, vol. 36(1), pages 15-30, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe RICCIARDO LAMONICA, 2002. "La funzionalita' nelle zone omogenee delle Marche," Working Papers 165, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    2. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    3. Dawid Majcherek & Marzenna Anna Weresa & Christina Ciecierski, 2020. "Understanding Regional Risk Factors for Cancer: A Cluster Analysis of Lifestyle, Environment and Socio-Economic Status in Poland," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
    4. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    5. Carlos Carrasco-Farré, 2022. "The fingerprints of misinformation: how deceptive content differs from reliable sources in terms of cognitive effort and appeal to emotions," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-18, December.
    6. Felix Mbuga & Cristina Tortora, 2021. "Spectral Clustering of Mixed-Type Data," Stats, MDPI, vol. 5(1), pages 1-11, December.
    7. Berardi, Victor L. & Zhang, Guoqiang & Felix Offodile, O., 1999. "A mathematical programming approach to evaluating alternative machine clusters in cellular manufacturing," International Journal of Production Economics, Elsevier, vol. 58(3), pages 253-264, January.
    8. R Torres-Velázquez & V Estivill-Castro, 2004. "Local search for Hamiltonian Path with applications to clustering visitation paths," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(7), pages 737-748, July.
    9. Zhang, Weibin & Zha, Huazhu & Zhang, Shuai & Ma, Lei, 2023. "Road section traffic flow prediction method based on the traffic factor state network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    10. Wittek, Peter, 2013. "Two-way incremental seriation in the temporal domain with three-dimensional visualization: Making sense of evolving high-dimensional datasets," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 193-201.
    11. Rogers, David F. & Kulkarni, Shailesh S., 2005. "Optimal bivariate clustering and a genetic algorithm with an application in cellular manufacturing," European Journal of Operational Research, Elsevier, vol. 160(2), pages 423-444, January.
    12. Michal Bernardelli & Zbigniew Korzeb & Pawel Niedziolka, 2021. "The banking sector as the absorber of the COVID-19 crisis’ economic consequences: perception of WSE investors," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 335-374, June.
    13. Jelle R Dalenberg & Luca Nanetti & Remco J Renken & René A de Wijk & Gert J ter Horst, 2014. "Dealing with Consumer Differences in Liking during Repeated Exposure to Food; Typical Dynamics in Rating Behavior," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    14. Karolina Pawlak & Luboš Smutka & Pavel Kotyza, 2021. "Agricultural Potential of the EU Countries: How Far Are They from the USA?," Agriculture, MDPI, vol. 11(4), pages 1-21, March.
    15. Custodio João, Igor & Lucas, André & Schaumburg, Julia & Schwaab, Bernd, 2023. "Dynamic clustering of multivariate panel data," Journal of Econometrics, Elsevier, vol. 237(2).
    16. Carlos Fernández-Hernández & Carmelo J. León & Jorge E. Araña & Flora Díaz-Pére, 2016. "Market segmentation, activities and environmental behaviour in rural tourism," Tourism Economics, , vol. 22(5), pages 1033-1054, October.
    17. Aurora Torrente & Juan Romo, 2021. "Initializing k-means Clustering by Bootstrap and Data Depth," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 232-256, July.
    18. Thomas Bittmann & Jens‐Peter Loy & Sven Anders, 2020. "Product differentiation and cost pass‐through: industry‐wide versus firm‐specific cost shocks," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(4), pages 1184-1209, October.
    19. Anca Gabriela Ilie & Marinela Luminita Emanuela Zlatea & Cristina Negreanu & Dan Dumitriu & Alma Pentescu, 2023. "Reliance on Russian Federation Energy Imports and Renewable Energy in the European Union," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(64), pages 780-780, August.
    20. Hafid Kadi & Mohammed Rebbah & Boudjelal Meftah & Olivier Lézoray, 2021. "A Data Representation Model for Personalized Medicine," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 16(4), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:12:y:1995:i:2:p:165-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.