IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v142y2022icp328-343.html
   My bibliography  Save this article

Why is your company not robotic? The technology and human capital needed by firms to become robotic

Author

Listed:
  • Ballestar, María Teresa
  • García-Lazaro, Aida
  • Sainz, Jorge
  • Sanz, Ismael

Abstract

The impact of companies’ adoption of robotics is increasingly interesting. This study aims to elucidate how the adoption of these technologies will affect companies and society. Companies that use these technologies expect to gain a competitive advantage, but robotization implies risks that must be managed by companies and governments. This research focuses on one of the most sensitive elements of this transformation process—the workforce.

Suggested Citation

  • Ballestar, María Teresa & García-Lazaro, Aida & Sainz, Jorge & Sanz, Ismael, 2022. "Why is your company not robotic? The technology and human capital needed by firms to become robotic," Journal of Business Research, Elsevier, vol. 142(C), pages 328-343.
  • Handle: RePEc:eee:jbrese:v:142:y:2022:i:c:p:328-343
    DOI: 10.1016/j.jbusres.2021.12.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296321009759
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2021.12.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philippe Aghion & Antonin Bergeaud & Timo Boppart & Peter J. Klenow & Huiyu Li, 2019. "Missing Growth from Creative Destruction," American Economic Review, American Economic Association, vol. 109(8), pages 2795-2822, August.
    2. David Autor & Anna Salomons, 2018. "Is Automation Labor-Displacing? Productivity Growth, Employment, and the Labor Share," NBER Working Papers 24871, National Bureau of Economic Research, Inc.
    3. Maarten Goos & Alan Manning & Anna Salomons, 2009. "Job Polarization in Europe," American Economic Review, American Economic Association, vol. 99(2), pages 58-63, May.
    4. Cheryl Gaimon, 1985. "The Optimal Acquisition of Automation to Enhance the Productivity of Labor," Management Science, INFORMS, vol. 31(9), pages 1175-1190, September.
    5. Sotiris Blanas & Gino Gancia & Sang Yoon (Tim) Lee, 2019. "Who is afraid of machines?," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 34(100), pages 627-690.
    6. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    7. Daron Acemoglu & Pascual Restrepo, 2019. "Automation and New Tasks: How Technology Displaces and Reinstates Labor," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 3-30, Spring.
    8. Chad Syverson, 2011. "What Determines Productivity?," Journal of Economic Literature, American Economic Association, vol. 49(2), pages 326-365, June.
    9. Manav Raj & Robert Seamans, 2018. "Artificial Intelligence, Labor, Productivity, and the Need for Firm-Level Data," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 553-565, National Bureau of Economic Research, Inc.
    10. Ulrich Doraszelski & Jordi Jaumandreu, 2018. "Measuring the Bias of Technological Change," Journal of Political Economy, University of Chicago Press, vol. 126(3), pages 1027-1084.
    11. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    12. Adriana D. Kugler & Maurice Kugler & Laura Ripani & Rodimiro Rodrigo, 2020. "U.S. Robots and their Impacts in the Tropics: Evidence from Colombian Labor Markets," NBER Working Papers 28034, National Bureau of Economic Research, Inc.
    13. Daron Acemoglu & Pascual Restrepo, 2020. "Unpacking Skill Bias: Automation and New Tasks," AEA Papers and Proceedings, American Economic Association, vol. 110, pages 356-361, May.
    14. Zoltán J. Ács & Pontus Braunerhjelm & David B. Audretsch & Bo Carlsson, 2015. "The knowledge spillover theory of entrepreneurship," Chapters, in: Global Entrepreneurship, Institutions and Incentives, chapter 7, pages 129-144, Edward Elgar Publishing.
    15. Janet Currie & Henrik Kleven & Esmée Zwiers, 2020. "Technology and Big Data Are Changing Economics: Mining Text to Track Methods," AEA Papers and Proceedings, American Economic Association, vol. 110, pages 42-48, May.
    16. Gill A. Pratt, 2015. "Is a Cambrian Explosion Coming for Robotics?," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 51-60, Summer.
    17. Díaz-Chao, Ángel & Sainz-González, Jorge & Torrent-Sellens, Joan, 2016. "The competitiveness of small network-firm: A practical tool," Journal of Business Research, Elsevier, vol. 69(5), pages 1769-1774.
    18. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    19. Maravall, A. & del Rio, A., 2007. "Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 975-998, October.
    20. Robert Seamans & Manav Raj, 2018. "AI, Labor, Productivity and the Need for Firm-Level Data," NBER Working Papers 24239, National Bureau of Economic Research, Inc.
    21. Ballestar, María Teresa & Díaz-Chao, Ángel & Sainz, Jorge & Torrent-Sellens, Joan, 2021. "Impact of robotics on manufacturing: A longitudinal machine learning perspective," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    22. Faber, Marius, 2020. "Robots and reshoring: Evidence from Mexican labor markets," Journal of International Economics, Elsevier, vol. 127(C).
    23. Ballestar, María Teresa & Grau-Carles, Pilar & Sainz, Jorge, 2018. "Customer segmentation in e-commerce: Applications to the cashback business model," Journal of Business Research, Elsevier, vol. 88(C), pages 407-414.
    24. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    25. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    26. repec:nbr:nberch:14019 is not listed on IDEAS
    27. Garbe, Jan-Nicolas & Richter, Nicole Franziska, 2009. "Causal analysis of the internationalization and performance relationship based on neural networks -- advocating the transnational structure," Journal of International Management, Elsevier, vol. 15(4), pages 413-431, December.
    28. Ballestar, María Teresa & Díaz-Chao, Ángel & Sainz, Jorge & Torrent-Sellens, Joan, 2020. "Knowledge, robots and productivity in SMEs: Explaining the second digital wave," Journal of Business Research, Elsevier, vol. 108(C), pages 119-131.
    29. María Teresa Ballestar & Pilar Grau-Carles & Jorge Sainz, 2019. "Predicting customer quality in e-commerce social networks: a machine learning approach," Review of Managerial Science, Springer, vol. 13(3), pages 589-603, June.
    30. Ballestar, María Teresa & Doncel, Luis Miguel & Sainz, Jorge & Ortigosa-Blanch, Arturo, 2019. "A novel machine learning approach for evaluation of public policies: An application in relation to the performance of university researchers," Technological Forecasting and Social Change, Elsevier, vol. 149(C).
    31. Austan D. Goolsbee & Peter J. Klenow, 2018. "Internet Rising, Prices Falling: Measuring Inflation in a World of E-Commerce," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 488-492, May.
    32. repec:bin:bpeajo:v:49:y:2019:i:2018-01:p:1-87 is not listed on IDEAS
    33. Austan D. Goolsbee & Peter J. Klenow, 2018. "Internet Rising, Prices Falling: Measuring Inflation in a World of E-Commerce," NBER Working Papers 24649, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ballestar, María Teresa & Mir, Miguel Cuerdo & Pedrera, Luis Miguel Doncel & Sainz, Jorge, 2024. "Effectiveness of tutoring at school: A machine learning evaluation," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    2. Traverso, Silvio & Vatiero, Massimiliano & Zaninotto, Enrico, 2024. "Automation and flexible labor contracts: Firm-level evidence from Italy," GLO Discussion Paper Series 1425, Global Labor Organization (GLO).
    3. Zhu, Minghao & Liang, Chen & Yeung, Andy C.L. & Zhou, Honggeng, 2024. "The impact of intelligent manufacturing on labor productivity: An empirical analysis of Chinese listed manufacturing companies," International Journal of Production Economics, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ballestar, María Teresa & Díaz-Chao, Ángel & Sainz, Jorge & Torrent-Sellens, Joan, 2021. "Impact of robotics on manufacturing: A longitudinal machine learning perspective," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    2. Ballestar, María Teresa & Díaz-Chao, Ángel & Sainz, Jorge & Torrent-Sellens, Joan, 2020. "Knowledge, robots and productivity in SMEs: Explaining the second digital wave," Journal of Business Research, Elsevier, vol. 108(C), pages 119-131.
    3. Anderton, Robert & Jarvis, Valerie & Labhard, Vincent & Morgan, Julian & Petroulakis, Filippos & Vivian, Lara, 2020. "Virtually everywhere? Digitalisation and the euro area and EU economies," Occasional Paper Series 244, European Central Bank.
    4. Camiña, Ester & Díaz-Chao, Ángel & Torrent-Sellens, Joan, 2020. "Automation technologies: Long-term effects for Spanish industrial firms," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    5. Caselli, Mauro & Fracasso, Andrea & Scicchitano, Sergio & Traverso, Silvio & Tundis, Enrico, 2021. "Stop worrying and love the robot: An activity-based approach to assess the impact of robotization on employment dynamics," GLO Discussion Paper Series 802, Global Labor Organization (GLO).
    6. Jasmine Mondolo, 2022. "The composite link between technological change and employment: A survey of the literature," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1027-1068, September.
    7. Czarnitzki, Dirk & Fernández, Gastón P. & Rammer, Christian, 2023. "Artificial intelligence and firm-level productivity," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 188-205.
    8. Kerstin Hötte & Angelos Theodorakopoulos & Pantelis Koutroumpis, 2024. "Automation and taxation," Oxford Economic Papers, Oxford University Press, vol. 76(4), pages 945-969.
      • Kerstin Hotte & Angelos Theodorakopoulos & Pantelis Koutroumpis, 2021. "Automation and Taxation," Papers 2103.04111, arXiv.org, revised Apr 2022.
    9. Fierro, Luca Eduardo & Caiani, Alessandro & Russo, Alberto, 2022. "Automation, Job Polarisation, and Structural Change," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 499-535.
    10. Azio Barani, 2021. "Innovazione tecnologica e lavoro: automazione, occupazione e impatti socio-economici," QUADERNI DI ECONOMIA DEL LAVORO, FrancoAngeli Editore, vol. 0(114), pages 51-79.
    11. Gravina, Antonio Francesco & Foster-McGregor, Neil, 2020. "Automation, globalisation and relative wages: An empirical analysis of winners and losers," MERIT Working Papers 2020-040, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    12. Ian Goldin & Pantelis Koutroumpis & François Lafond & Julian Winkler, 2024. "Why Is Productivity Slowing Down?," Journal of Economic Literature, American Economic Association, vol. 62(1), pages 196-268, March.
    13. Michael Koch & Ilya Manuylov & Marcel Smolka, 2021. "Robots and Firms," The Economic Journal, Royal Economic Society, vol. 131(638), pages 2553-2584.
    14. Genz, Sabrina & Schnabel, Claus, 2021. "Digging into the digital divide: Workers' exposure to digitalization and its consequences for individual employment," Discussion Papers 118, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Labour and Regional Economics.
    15. Haapanala, Henri & Marx, Ive & Parolin, Zachary, 2022. "Robots and Unions: The Moderating Effect of Organised Labour on Technological Unemployment," IZA Discussion Papers 15080, Institute of Labor Economics (IZA).
    16. Brambilla, Irene & César, Andrés & Falcone, Guillermo & Gasparini, Leonardo, 2023. "The impact of robots in Latin America: Evidence from local labor markets," World Development, Elsevier, vol. 170(C).
    17. Kerstin Hotte & Melline Somers & Angelos Theodorakopoulos, 2022. "Technology and jobs: A systematic literature review," Papers 2204.01296, arXiv.org.
    18. Cali,Massimiliano & Presidente,Giorgio, 2021. "Automation and Manufacturing Performance in a Developing Country," Policy Research Working Paper Series 9653, The World Bank.
    19. Diaz Pavez, Luis R. & Martínez-Zarzoso, Inmaculada, 2021. "The impact of local and foreign automation on labor market outcomes in emerging countries," University of Göttingen Working Papers in Economics 423, University of Goettingen, Department of Economics.
    20. Fossen, Frank M. & Sorgner, Alina, 2022. "New digital technologies and heterogeneous wage and employment dynamics in the United States: Evidence from individual-level data," Technological Forecasting and Social Change, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:142:y:2022:i:c:p:328-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.