IDEAS home Printed from https://ideas.repec.org/a/eee/streco/v51y2019icp24-34.html
   My bibliography  Save this article

The change in the material stock of urban infrastructures in China

Author

Listed:
  • Zhang, Tao
  • Liu, Lili
  • Lv, Xiaodong

Abstract

The materials stocked in infrastructures comprehensively reflect resource consumption, waste generation and sustainable development; therefore, research investigating this topic is particularly important. First, this paper uses the bottom-up material flow analysis method to account for the material stocks (MS) in urban infrastructures and examines the spatial and temporal changes in the MS in China from 1997 to 2016. The results show that MS increased 4.04 times during this period and are spatially inclined to decrease from coastal regions to inland areas. Second, this paper combines the population and economic factors using the IPAT model (which considers the environmental Impact as a product of the Population, Affluence and Technology) and a panel data regression analysis to conclude that affluence is the major driving factor increasing MS, while the impact of technology has a negative effect throughout China. The effect of affluence in different regions is consistent with that throughout China, but the population and technology changes have different effects. Third, this study estimates the environmental impact under different scenarios and proposes suggestions and strategies for promoting sustainable development.

Suggested Citation

  • Zhang, Tao & Liu, Lili & Lv, Xiaodong, 2019. "The change in the material stock of urban infrastructures in China," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 24-34.
  • Handle: RePEc:eee:streco:v:51:y:2019:i:c:p:24-34
    DOI: 10.1016/j.strueco.2019.06.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0954349X19301146
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.strueco.2019.06.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McMillan, Colin A. & Moore, Michael R. & Keoleian, Gregory A. & Bulkley, Jonathan W., 2010. "Quantifying U.S. aluminum in-use stocks and their relationship with economic output," Ecological Economics, Elsevier, vol. 69(12), pages 2606-2613, October.
    2. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2013. "Drivers of CO2 emissions in the former Soviet Union: A country level IPAT analysis from 1990 to 2010," Energy, Elsevier, vol. 59(C), pages 743-753.
    3. Zhang, Chao & Chen, Wei-Qiang & Liu, Gang & Zhu, Da-Jian, 2017. "Economic Growth and the Evolution of Material Cycles: An Analytical Framework Integrating Material Flow and Stock Indicators," Ecological Economics, Elsevier, vol. 140(C), pages 265-274.
    4. Yu, Xiaoman & Geng, Yong & Dong, Huijuan & Ulgiati, Sergio & Liu, Zhe & Liu, Zuoxi & Ma, Zhixiao & Tian, Xu & Sun, Lu, 2016. "Sustainability assessment of one industrial region: A combined method of emergy analysis and IPAT (Human Impact Population Affluence Technology)," Energy, Elsevier, vol. 107(C), pages 818-830.
    5. Fishman, Tomer & Schandl, Heinz & Tanikawa, Hiroki, 2015. "The socio-economic drivers of material stock accumulation in Japan's prefectures," Ecological Economics, Elsevier, vol. 113(C), pages 76-84.
    6. Gang Liu & Colton E. Bangs & Daniel B. Müller, 2013. "Stock dynamics and emission pathways of the global aluminium cycle," Nature Climate Change, Nature, vol. 3(4), pages 338-342, April.
    7. Yue, Ting & Long, Ruyin & Chen, Hong & Zhao, Xin, 2013. "The optimal CO2 emissions reduction path in Jiangsu province: An expanded IPAT approach," Applied Energy, Elsevier, vol. 112(C), pages 1510-1517.
    8. Wanxin Hou & Xin Tian & Hiroki Tanikawa, 2015. "Greening China's Wastewater Treatment Infrastructure in the Face of Rapid Development: Analysis Based on Material Stock and Flow through 2050," Journal of Industrial Ecology, Yale University, vol. 19(1), pages 129-140, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Martin del Campo & Simron Jit Singh & Tomer Fishman & Adelle Thomas & Michael Drescher, 2023. "The Bahamas at risk: Material stocks, sea‐level rise, and the implications for development," Journal of Industrial Ecology, Yale University, vol. 27(4), pages 1165-1183, August.
    2. Dai, Tiejun & Yue, Zhongchun, 2023. "The evolution and decoupling of in-use stocks in Beijing," Ecological Economics, Elsevier, vol. 203(C).
    3. Kronnaphat Khumvongsa & Jing Guo & Suthida Theepharaksapan & Hiroaki Shirakawa & Hiroki Tanikawa, 2023. "Uncovering urban transportation infrastructure expansion and sustainability challenge in Bangkok: Insights from a material stock perspective," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 476-490, April.
    4. Mingyue Yang & Ningyin Liu & Xinjing Wang & Yan Zhang, 2023. "Chinese cities exhibit diverse allometric growth patterns in material metabolism," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1626-1638, December.
    5. Dombi, Mihály, 2021. "Types of planning systems and effects on construction material volumes: An explanatory analysis in Europe," Land Use Policy, Elsevier, vol. 109(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Tiejun & Yue, Zhongchun, 2023. "The evolution and decoupling of in-use stocks in Beijing," Ecological Economics, Elsevier, vol. 203(C).
    2. Zhang, Chao & Chen, Wei-Qiang & Liu, Gang & Zhu, Da-Jian, 2017. "Economic Growth and the Evolution of Material Cycles: An Analytical Framework Integrating Material Flow and Stock Indicators," Ecological Economics, Elsevier, vol. 140(C), pages 265-274.
    3. Wu, Dong & Geng, Yong & Pan, Hengyu, 2021. "Whether natural gas consumption bring double dividends of economic growth and carbon dioxide emissions reduction in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Sverdrup, Harald U. & Ragnarsdottir, Kristin Vala & Koca, Deniz, 2015. "Aluminium for the future: Modelling the global production, market supply, demand, price and long term development of the global reserves," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 139-154.
    5. Huang, Yuan & Yu, Qiang & Wang, Ruirui, 2021. "Driving factors and decoupling effect of carbon footprint pressure in China: Based on net primary production," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    6. Yue, Qiang & Chai, Xicui & Zhao, Feng & He, Junhao & Li, Yun & Wang, Heming, 2023. "Analysis of iron in-use stocks: Evidence from the provincial and municipal levels in China," Resources Policy, Elsevier, vol. 80(C).
    7. Jaruwan Chontanawat, 2019. "Driving Forces of Energy-Related CO 2 Emissions Based on Expanded IPAT Decomposition Analysis: Evidence from ASEAN and Four Selected Countries," Energies, MDPI, vol. 12(4), pages 1-23, February.
    8. Marco Quatrosi, 2022. "Clustering environmental performances, energy efficiency and clean energy patterns: a comparative static approach across EU Countries," SEEDS Working Papers 0722, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jul 2022.
    9. Li, Shupeng & Wang, Zhe & Yue, Qiang & Zhang, Tingan, 2022. "Analysis of the quantity and spatial characterization of aluminum in-use stocks in China," Resources Policy, Elsevier, vol. 79(C).
    10. Huang, Cheng & Han, Ji & Chen, Wei-Qiang, 2017. "Changing patterns and determinants of infrastructures’ material stocks in Chinese cities," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 47-53.
    11. Dai, Xiao-wen & Sun, Zhanli & Müller, Daniel, 2021. "Driving factors of direct greenhouse gas emissions from China’s pig industry from 1976 to 2016," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 20(1), pages 319-329.
    12. Yang, Xue & Zhang, Chao & Li, Xinyi & Cao, Zhi & Wang, Peng & Wang, Heming & Liu, Gang & Xia, Ziqian & Zhu, Dajian & Chen, Wei-Qiang, 2024. "Multinational dynamic steel cycle analysis reveals sequential decoupling between material use and economic growth," Ecological Economics, Elsevier, vol. 217(C).
    13. Watari, Takuma & Yokoi, Ryosuke, 2021. "International inequality in in-use metal stocks: What it portends for the future," Resources Policy, Elsevier, vol. 70(C).
    14. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    15. Wang, Xianzhu & Huang, He & Hong, Jingke & Ni, Danfei & He, Rongxiao, 2020. "A spatiotemporal investigation of energy-driven factors in China: A region-based structural decomposition analysis," Energy, Elsevier, vol. 207(C).
    16. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    17. Chen, Wei-Qiang & Graedel, T.E., 2012. "Dynamic analysis of aluminum stocks and flows in the United States: 1900–2009," Ecological Economics, Elsevier, vol. 81(C), pages 92-102.
    18. Inácio Araúgo & Randall Jackson & Amir B. Ferreira Neto & Fernando Perobelli, 2018. "Environmental Costs of European Union Membership: A Structural Decomposition Analysis," Working Papers Working Paper 2018-04, Regional Research Institute, West Virginia University.
    19. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    20. Kassouri, Yacouba & Alola, Andrew Adewale & Savaş, Savaş, 2021. "The dynamics of material consumption in phases of the economic cycle for selected emerging countries," Resources Policy, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:streco:v:51:y:2019:i:c:p:24-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/525148 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.