IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v80y2023ics0301420722007346.html
   My bibliography  Save this article

Analysis of iron in-use stocks: Evidence from the provincial and municipal levels in China

Author

Listed:
  • Yue, Qiang
  • Chai, Xicui
  • Zhao, Feng
  • He, Junhao
  • Li, Yun
  • Wang, Heming

Abstract

Rapid industrialization and urbanization in China have greatly promoted the use of steel throughout the country, making China the world's largest steel producer and consumer. Iron in-use stocks (IIUS) play an important role in the life cycle of steel products, and the study of IIUS is of great significance for the sustainable use of iron resources. There is limited information on the historical evolution of IIUS at the provincial and municipal levels in China. This study estimated and analyzed the spatial distributions of IIUS in Sichuan Province, Liaoning Province, Jiangsu Province, Hubei Province, Qinghai Province and Guangdong province from 2000 to 2018 using the bottom-up method. The research results show that the IIUS of Jiangsu was 462.9 million tons in 2018, and its per capita IIUS was 5.7 t/cap, which was the largest among the six provinces. The IIUS of Qinghai was 21.03 million tons in 2018, the lowest among the six provinces. The per capita IIUS in Sichuan was 2.7 t/cap in 2018, the lowest per capita level among the six provinces. From the perspective of industrial distribution, the construction industry is still the main carrier of IIUS. Based on the estimated results of IIUS, the spatial distributions at the municipal level were calculated. The distribution of IIUS density in each city was found to be unequal, and the level of economic development has a great impact on the IIUS density. The spatial distribution at the provincial and municipal levels can provide important and useful information for the efficient recycling of metal resources.

Suggested Citation

  • Yue, Qiang & Chai, Xicui & Zhao, Feng & He, Junhao & Li, Yun & Wang, Heming, 2023. "Analysis of iron in-use stocks: Evidence from the provincial and municipal levels in China," Resources Policy, Elsevier, vol. 80(C).
  • Handle: RePEc:eee:jrpoli:v:80:y:2023:i:c:s0301420722007346
    DOI: 10.1016/j.resourpol.2022.103291
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420722007346
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2022.103291?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McMillan, Colin A. & Moore, Michael R. & Keoleian, Gregory A. & Bulkley, Jonathan W., 2010. "Quantifying U.S. aluminum in-use stocks and their relationship with economic output," Ecological Economics, Elsevier, vol. 69(12), pages 2606-2613, October.
    2. Pauliuk, Stefan & Wang, Tao & Müller, Daniel B., 2013. "Steel all over the world: Estimating in-use stocks of iron for 200 countries," Resources, Conservation & Recycling, Elsevier, vol. 71(C), pages 22-30.
    3. Drakonakis, Konstantine & Rostkowski, Katherine & Rauch, Jason & Graedel, T.E. & Gordon, R.B., 2007. "Metal capital sustaining a North American city: Iron and copper in New Haven, CT," Resources, Conservation & Recycling, Elsevier, vol. 49(4), pages 406-420.
    4. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Geng, Yong & Sarkis, Joseph, 2017. "Material flow analysis of lithium in China," Resources Policy, Elsevier, vol. 51(C), pages 100-106.
    5. Gang Liu & Colton E. Bangs & Daniel B. Müller, 2013. "Stock dynamics and emission pathways of the global aluminium cycle," Nature Climate Change, Nature, vol. 3(4), pages 338-342, April.
    6. Junming Zhu & Chengming Fan & Haijia Shi & Lei Shi, 2019. "Efforts for a Circular Economy in China: A Comprehensive Review of Policies," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 110-118, February.
    7. Li, Qiangfeng & Gao, Tianming & Wang, Gaoshang & Cheng, Jinhua & Dai, Tao & Wang, Huan, 2019. "Dynamic analysis of iron flows and in-use stocks in China: 1949–2015," Resources Policy, Elsevier, vol. 62(C), pages 625-634.
    8. Tao Wang & Daniel B. Müller & Seiji Hashimoto, 2015. "The Ferrous Find: Counting Iron and Steel Stocks in China's Economy," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 877-889, October.
    9. Wang, Peng & Jiang, Zeyi & Geng, Xinyi & Hao, Shiyu & Zhang, Xinxin, 2014. "Quantification of Chinese steel cycle flow: Historical status and future options," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 191-199.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yinan & Huang, Yuxin, 2023. "Enhancing resources efficiency: Studying economic development in resource-rich regions for long-term sustainability of China," Resources Policy, Elsevier, vol. 86(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Tiejun & Yue, Zhongchun, 2023. "The evolution and decoupling of in-use stocks in Beijing," Ecological Economics, Elsevier, vol. 203(C).
    2. Li, Shupeng & Wang, Zhe & Yue, Qiang & Zhang, Tingan, 2022. "Analysis of the quantity and spatial characterization of aluminum in-use stocks in China," Resources Policy, Elsevier, vol. 79(C).
    3. Cao, Zhi & Shen, Lei & Liu, Litao & Zhao, Jianan & Zhong, Shuai & Kong, Hanxiao & Sun, Yanzhi, 2017. "Estimating the in-use cement stock in China: 1920–2013," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 21-31.
    4. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    5. Kermeli, Katerina & Edelenbosch, Oreane Y. & Crijns-Graus, Wina & van Ruijven, Bas J. & van Vuuren, Detlef P. & Worrell, Ernst, 2022. "Improving material projections in Integrated Assessment Models: The use of a stock-based versus a flow-based approach for the iron and steel industry," Energy, Elsevier, vol. 239(PE).
    6. Yang, Ping & Gao, Xiangyun & Zhao, Yiran & Jia, Nanfei & Dong, Xiaojuan, 2021. "Lithium resource allocation optimization of the lithium trading network based on material flow," Resources Policy, Elsevier, vol. 74(C).
    7. Fu, Xinkai & Ueland, Stian M. & Olivetti, Elsa, 2017. "Econometric modeling of recycled copper supply," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 219-226.
    8. Sverdrup, Harald U. & Ragnarsdottir, Kristin Vala & Koca, Deniz, 2015. "Aluminium for the future: Modelling the global production, market supply, demand, price and long term development of the global reserves," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 139-154.
    9. Wang, Peng & Li, Wen & Kara, Sami, 2017. "Cradle-to-cradle modeling of the future steel flow in China," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 45-57.
    10. Qiance Liu & Litao Liu & Xiaojie Liu & Shenggong Li & Gang Liu, 2021. "Building stock dynamics and the impact of construction bubble and bust on employment in China," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1631-1643, December.
    11. Wang, Peng & Zhao, Shen & Dai, Tao & Peng, Kun & Zhang, Qi & Li, Jiashuo & Chen, Wei-Qiang, 2022. "Regional disparities in steel production and restrictions to progress on global decarbonization: A cross-national analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Zhang, Tao & Liu, Lili & Lv, Xiaodong, 2019. "The change in the material stock of urban infrastructures in China," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 24-34.
    13. Hanspeter Wieland & Manfred Lenzen & Arne Geschke & Jacob Fry & Dominik Wiedenhofer & Nina Eisenmenger & Johannes Schenk & Stefan Giljum, 2022. "The PIOLab: Building global physical input–output tables in a virtual laboratory," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 683-703, June.
    14. Lin, Chen & Liu, Gang & Müller, Daniel B., 2017. "Characterizing the role of built environment stocks in human development and emission growth," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 67-72.
    15. Ciacci, L. & Passarini, F. & Vassura, I., 2017. "The European PVC cycle: In-use stock and flows," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 108-116.
    16. Yang, Xue & Zhang, Chao & Li, Xinyi & Cao, Zhi & Wang, Peng & Wang, Heming & Liu, Gang & Xia, Ziqian & Zhu, Dajian & Chen, Wei-Qiang, 2024. "Multinational dynamic steel cycle analysis reveals sequential decoupling between material use and economic growth," Ecological Economics, Elsevier, vol. 217(C).
    17. Zhang, Chao & Chen, Wei-Qiang & Liu, Gang & Zhu, Da-Jian, 2017. "Economic Growth and the Evolution of Material Cycles: An Analytical Framework Integrating Material Flow and Stock Indicators," Ecological Economics, Elsevier, vol. 140(C), pages 265-274.
    18. Lefeuvre, Anaële & Garnier, Sébastien & Jacquemin, Leslie & Pillain, Baptiste & Sonnemann, Guido, 2017. "Anticipating in-use stocks of carbon fiber reinforced polymers and related waste flows generated by the commercial aeronautical sector until 2050," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 264-272.
    19. Chen, Wei-Qiang & Graedel, T.E., 2012. "Dynamic analysis of aluminum stocks and flows in the United States: 1900–2009," Ecological Economics, Elsevier, vol. 81(C), pages 92-102.
    20. Xuan, Yanni & Yue, Qiang, 2017. "Scenario analysis on resource and environmental benefits of imported steel scrap for China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 186-198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:80:y:2023:i:c:s0301420722007346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.