IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v21y2018i2d10.1007_s11203-018-9183-y.html
   My bibliography  Save this article

Polygonal smoothing of the empirical distribution function

Author

Listed:
  • D. Blanke

    (Avignon University, LMA EA2151)

  • D. Bosq

    (Sorbonne Université, CNRS, Laboratoire de Probabilités, Statistique et Modélisation, LPSM)

Abstract

We present two families of polygonal estimators of the distribution function: the first family is based on the knowledge of the support while the second addresses the case of an unknown support. Polygonal smoothing is a simple and natural method for regularizing the empirical distribution function $$F_n$$ F n but its properties have not been studied deeply. First, consistency and exponential type inequalities are derived from well-known convergence properties of $$F_n$$ F n . Then, we study their mean integrated squared error (MISE) and we establish that polygonal estimators may improve the MISE of $$F_n$$ F n . We conclude by some numerical results to compare these estimators globally, and also together with the integrated kernel distribution estimator.

Suggested Citation

  • D. Blanke & D. Bosq, 2018. "Polygonal smoothing of the empirical distribution function," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 263-287, July.
  • Handle: RePEc:spr:sistpr:v:21:y:2018:i:2:d:10.1007_s11203-018-9183-y
    DOI: 10.1007/s11203-018-9183-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-018-9183-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-018-9183-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quintela-del-Río, Alejandro & Estévez-Pérez, Graciela, 2012. "Nonparametric Kernel Distribution Function Estimation with kerdiest: An R Package for Bandwidth Choice and Applications," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i08).
    2. Jan W. H. Swanepoel & Francois C. Van Graan, 2005. "A New Kernel Distribution Function Estimator Based on a Non‐parametric Transformation of the Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(4), pages 551-562, December.
    3. Jones, M. C., 1990. "The performance of kernel density functions in kernel distribution function estimation," Statistics & Probability Letters, Elsevier, vol. 9(2), pages 129-132, February.
    4. Rychlik, Tomasz, 1994. "Distributions and expectations of order statistics for possibly dependent random variables," Journal of Multivariate Analysis, Elsevier, vol. 48(1), pages 31-42, January.
    5. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    6. Lejeune, Michel & Sarda, Pascal, 1992. "Smooth estimators of distribution and density functions," Computational Statistics & Data Analysis, Elsevier, vol. 14(4), pages 457-471, November.
    7. Caraux, G. & Gascuel, O., 1992. "Bounds on distribution functions of order statistics for dependent variates," Statistics & Probability Letters, Elsevier, vol. 14(2), pages 103-105, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eftekharian, A. & Razmkhah, M., 2017. "On estimating the distribution function and odds using ranked set sampling," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 1-10.
    2. Morteza Mohammadi & Majid Hashempour, 2024. "On weighted version of dynamic cumulative residual inaccuracy measure based on extropy," Statistical Papers, Springer, vol. 65(7), pages 4599-4629, September.
    3. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    4. Tenreiro, Carlos, 2003. "On the asymptotic normality of multistage integrated density derivatives kernel estimators," Statistics & Probability Letters, Elsevier, vol. 64(3), pages 311-322, September.
    5. Chacón, José E. & Monfort, Pablo & Tenreiro, Carlos, 2014. "Fourier methods for smooth distribution function estimation," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 223-230.
    6. Funke, Benedikt & Palmes, Christian, 2017. "A note on estimating cumulative distribution functions by the use of convolution power kernels," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 90-98.
    7. Steven Abrams & Paul Janssen & Jan Swanepoel & Noël Veraverbeke, 2020. "Nonparametric estimation of the cross ratio function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 771-801, June.
    8. Okolewski, Andrzej, 2017. "Extremal properties of order statistic distributions for dependent samples with partially known multidimensional marginals," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 1-9.
    9. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    10. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    11. Bouezmarni, T. & Mesfioui, M. & Rolin, J.M., 2007. "L1-rate of convergence of smoothed histogram," Statistics & Probability Letters, Elsevier, vol. 77(14), pages 1497-1504, August.
    12. Ruey-Ching Hwang & K. F. Cheng & Jack C. Lee, 2007. "A semiparametric method for predicting bankruptcy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(5), pages 317-342.
    13. Jens Perch Nielsen & Carsten Tanggaard & M.C. Jones, 2007. "Local Linear Density Estimation for Filtered Survival Data, with Bias Correction," CREATES Research Papers 2007-13, Department of Economics and Business Economics, Aarhus University.
    14. Joachim Grammig & Reinhard Hujer & Stefan Kokot, 2002. "Tackling Boundary Effects in Nonparametric Estimation of Intra-Day Liquidity Measures," Computational Statistics, Springer, vol. 17(2), pages 233-249, July.
    15. BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen V.K., 2007. "Nonparametric density estimation for multivariate bounded data," LIDAM Discussion Papers CORE 2007065, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Minglu Ma & Qiang Wang, 2022. "Assessment and Forecast of Green Total Factor Energy Efficiency in the Yellow River Basin—A Perspective Distinguishing the Upper, Middle and Lower Stream," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    17. É. Youndjé, 2022. "L1 Properties of the Nadaraya Quantile Estimator," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 867-884, August.
    18. Bouezmarni, T. & Rombouts, J.V.K., 2009. "Semiparametric multivariate density estimation for positive data using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2040-2054, April.
    19. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
    20. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:21:y:2018:i:2:d:10.1007_s11203-018-9183-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.