IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v121y2011i11p2571-2591.html
   My bibliography  Save this article

Compound Markov counting processes and their applications to modeling infinitesimally over-dispersed systems

Author

Listed:
  • Bretó, Carles
  • Ionides, Edward L.

Abstract

We propose an infinitesimal dispersion index for Markov counting processes. We show that, under standard moment existence conditions, a process is infinitesimally (over-)equi-dispersed if, and only if, it is simple (compound), i.e. it increases in jumps of one (or more) unit(s), even though infinitesimally equi-dispersed processes might be under-, equi- or over-dispersed using previously studied indices. Compound processes arise, for example, when introducing continuous-time white noise to the rates of simple processes resulting in Lévy-driven SDEs. We construct multivariate infinitesimally over-dispersed compartment models and queuing networks, suitable for applications where moment constraints inherent to simple processes do not hold.

Suggested Citation

  • Bretó, Carles & Ionides, Edward L., 2011. "Compound Markov counting processes and their applications to modeling infinitesimally over-dispersed systems," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2571-2591, November.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:11:p:2571-2591
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414911001761
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    2. Fan, Ruzong & Lange, Kenneth & Peña, Edsel, 1999. "Applications of a formula for the variance function of a stochastic process," Statistics & Probability Letters, Elsevier, vol. 43(2), pages 123-130, June.
    3. Varughese, M.M. & Fatti, L.P., 2008. "Incorporating environmental stochasticity within a biological population model," Theoretical Population Biology, Elsevier, vol. 74(1), pages 115-129.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bretó, Carles, 2014. "Trajectory composition of Poisson time changes and Markov counting systems," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 91-98.
    2. Jonathan Fintzi & Jon Wakefield & Vladimir N. Minin, 2022. "A linear noise approximation for stochastic epidemic models fit to partially observed incidence counts," Biometrics, The International Biometric Society, vol. 78(4), pages 1530-1541, December.
    3. Bretó, Carles, 2012. "On the infinitesimal dispersion of multivariate Markov counting systems," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 720-725.
    4. King, Aaron A. & Lin, Qianying & Ionides, Edward L., 2022. "Markov genealogy processes," Theoretical Population Biology, Elsevier, vol. 143(C), pages 77-91.
    5. Bretó, Carles, 2012. "Time changes that result in multiple points in continuous-time Markov counting processes," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2229-2234.
    6. King, Aaron A. & Nguyen, Dao & Ionides, Edward L., 2016. "Statistical Inference for Partially Observed Markov Processes via the R Package pomp," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i12).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Bogan Aruoba & Pablo Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2021. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 41, pages 96-120, July.
    2. Arellano, Manuel & Blundell, Richard & Bonhomme, Stéphane & Light, Jack, 2024. "Heterogeneity of consumption responses to income shocks in the presence of nonlinear persistence," Journal of Econometrics, Elsevier, vol. 240(2).
    3. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate stochastic volatility with co-heteroscedasticity," CAMA Working Papers 2018-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    4. McKinley, Trevelyan J. & Ross, Joshua V. & Deardon, Rob & Cook, Alex R., 2014. "Simulation-based Bayesian inference for epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 434-447.
    5. Giesecke, K. & Schwenkler, G., 2019. "Simulated likelihood estimators for discretely observed jump–diffusions," Journal of Econometrics, Elsevier, vol. 213(2), pages 297-320.
    6. Aruoba, S. Borağan & Bocola, Luigi & Schorfheide, Frank, 2017. "Assessing DSGE model nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 83(C), pages 34-54.
    7. Varughese, Melvin M., 2013. "Parameter estimation for multivariate diffusion systems," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 417-428.
    8. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
    9. Delis, Manthos D. & Tsionas, Mike G., 2018. "Measuring management practices," International Journal of Production Economics, Elsevier, vol. 199(C), pages 65-77.
    10. Johan Dahlin & Fredrik Lindsten & Thomas B. Schon, 2015. "Quasi-Newton particle Metropolis-Hastings," Papers 1502.03656, arXiv.org, revised Sep 2015.
    11. Matias Quiroz & Robert Kohn & Mattias Villani & Minh-Ngoc Tran, 2019. "Speeding Up MCMC by Efficient Data Subsampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 831-843, April.
    12. Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Bayesian analysis of chaos: The joint return-volatility dynamical system," MPRA Paper 80632, University Library of Munich, Germany.
    13. Nonejad, Nima, 2015. "Flexible model comparison of unobserved components models using particle Gibbs with ancestor sampling," Economics Letters, Elsevier, vol. 133(C), pages 35-39.
    14. James M. Nason & Gregor W. Smith, 2021. "Measuring the slowly evolving trend in US inflation with professional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
    15. Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
    16. Jin, Guang & Matthews, David E. & Zhou, Zhongbao, 2013. "A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 7-20.
    17. Delis, Manthos D. & Iosifidi, Maria & Kazakis, Pantelis & Ongena, Steven & Tsionas, Mike G., 2022. "Management practices and M&A success," Journal of Banking & Finance, Elsevier, vol. 134(C).
    18. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2018. "Measuring Uncertainty and Its Impact on the Economy," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 799-815, December.
    19. Th I Götz & G Lahmer & V Strnad & Ch Bert & B Hensel & A M Tomé & E W Lang, 2017. "A tool to automatically analyze electromagnetic tracking data from high dose rate brachytherapy of breast cancer patients," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-31, September.
    20. Naoki Awaya & Yasuhiro Omori, 2021. "Particle Rolling MCMC with Double-Block Sampling ," CIRJE F-Series CIRJE-F-1175, CIRJE, Faculty of Economics, University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:11:p:2571-2591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.