IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i8p1285-1291.html
   My bibliography  Save this article

Efficiency of the OLS estimator in the vicinity of a spatial unit root

Author

Listed:
  • Martellosio, Federico

Abstract

Previous results have indicated that the OLS estimator of the vector of regression coefficients can be nearly as efficient as the best linear unbiased estimator when the regression errors follow a spatial process with root in the vicinity of unity. Such results were derived under the assumption of a symmetric weights matrix, which simplifies the analysis considerably, but is very often not satisfied in applications. This paper provides nontrivial generalizations to the important case of nonsymmetric weights matrices.

Suggested Citation

  • Martellosio, Federico, 2011. "Efficiency of the OLS estimator in the vicinity of a spatial unit root," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1285-1291, August.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:1285-1291
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211001210
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roland Jeske & Seuck Song, 2003. "Relative efficiency of OLSE and COTE for seasonal autoregressive disturbances," Statistical Papers, Springer, vol. 44(3), pages 421-432, July.
    2. Kleiber, Christian, 2001. "Finite sample efficiency of OLS in linear regression models with long-memory disturbances," Economics Letters, Elsevier, vol. 72(2), pages 131-136, August.
    3. Martellosio, Federico, 2010. "Power Properties Of Invariant Tests For Spatial Autocorrelation In Linear Regression," Econometric Theory, Cambridge University Press, vol. 26(1), pages 152-186, February.
    4. Baltagi, Badi H. & Liu, Long, 2010. "Spurious spatial regression with equal weights," Statistics & Probability Letters, Elsevier, vol. 80(21-22), pages 1640-1642, November.
    5. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.
    6. Baran, Sándor & Pap, Gyula & van Zuijlen, Martien C. A., 2004. "Asymptotic inference for a nearly unstable sequence of stationary spatial AR models," Statistics & Probability Letters, Elsevier, vol. 69(1), pages 53-61, August.
    7. Paulauskas, Vygantas, 2007. "On unit roots for spatial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 209-226, January.
    8. Harry H. Kelejian & Ingmar R. Prucha & Yevgeny Yuzefovich, 2006. "Estimation Problems In Models With Spatial Weighting Matrices Which Have Blocks Of Equal Elements," Journal of Regional Science, Wiley Blackwell, vol. 46(3), pages 507-515, August.
    9. Kramer, Walter & Baltagi, Badi, 1996. "A general condition for an optimal limiting efficiency of OLS in the general linear regression model," Economics Letters, Elsevier, vol. 50(1), pages 13-17, January.
    10. Lung-Fei Lee & Jihai Yu, 2009. "Spatial Nonstationarity and Spurious Regression: the Case with a Row-normalized Spatial Weights Matrix," Spatial Economic Analysis, Taylor & Francis Journals, vol. 4(3), pages 301-327.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grant Hillier & Federico Martellosio, 2013. "Properties of the maximum likelihood estimator in spatial autoregressive models," CeMMAP working papers CWP44/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Badi H. Baltagi & Chihwa Kao & Long Liu, 2013. "The Estimation and Testing of a Linear Regression with Near Unit Root in the Spatial Autoregressive Error Term," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(3), pages 241-270, September.
    3. Grant Hillier & Federico Martellosio, 2013. "Properties of the maximum likelihood estimator in spatial autoregressive models," CeMMAP working papers 44/13, Institute for Fiscal Studies.
    4. Preinerstorfer, David & Pötscher, Benedikt M., 2017. "On The Power Of Invariant Tests For Hypotheses On A Covariance Matrix," Econometric Theory, Cambridge University Press, vol. 33(1), pages 1-68, February.
    5. Patalee, M.A. Buddhika & Tonsor, Glynn T., 2021. "Impact of weather on cow-calf industry locations and production in the United States," Agricultural Systems, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badi H. Baltagi & Junjie Shu, 2024. "A Survey of Spatial Unit Roots," Mathematics, MDPI, vol. 12(7), pages 1-32, March.
    2. Baltagi, Badi H. & Liu, Long, 2024. "Testing for spatial correlation under a complete bipartite network," Economics Letters, Elsevier, vol. 241(C).
    3. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    4. Martellosio, Federico, 2008. "Testing for spatial autocorrelation: the regressors that make the power disappear," MPRA Paper 10542, University Library of Munich, Germany.
    5. Kuersteiner, Guido M. & Prucha, Ingmar R. & Zeng, Ying, 2023. "Efficient peer effects estimators with group effects," Journal of Econometrics, Elsevier, vol. 235(2), pages 2155-2194.
    6. Giuseppe Arbia, 2011. "A Lustrum of SEA: Recent Research Trends Following the Creation of the Spatial Econometrics Association (2007--2011)," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(4), pages 377-395, July.
    7. Baran, Sándor & Pap, Gyula, 2012. "Parameter estimation in a spatial unilateral unit root autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 282-305.
    8. Tony Smith & Ka Lee, 2012. "The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach," Journal of Geographical Systems, Springer, vol. 14(1), pages 91-124, January.
    9. Baltagi, Badi H. & Liu, Long, 2010. "Spurious spatial regression with equal weights," Statistics & Probability Letters, Elsevier, vol. 80(21-22), pages 1640-1642, November.
    10. Baran, Sándor & Pap, Gyula, 2009. "On the least squares estimator in a nearly unstable sequence of stationary spatial AR models," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 686-698, April.
    11. Federico Martellosio & Grant Hillier, 2019. "Adjusted QMLE for the spatial autoregressive parameter," Papers 1909.08141, arXiv.org.
    12. Martellosio, Federico & Hillier, Grant, 2020. "Adjusted QMLE for the spatial autoregressive parameter," Journal of Econometrics, Elsevier, vol. 219(2), pages 488-506.
    13. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    14. Tiziano Arduini & Eleonora Patacchini & Edoardo Rainone, 2014. "Identification and Estimation of Outcome Response with Heterogeneous Treatment Externalities," EIEF Working Papers Series 1407, Einaudi Institute for Economics and Finance (EIEF), revised Sep 2014.
    15. Preinerstorfer, David & Pötscher, Benedikt M., 2017. "On The Power Of Invariant Tests For Hypotheses On A Covariance Matrix," Econometric Theory, Cambridge University Press, vol. 33(1), pages 1-68, February.
    16. Shew Fan Liu & Zhenlin Yang, 2015. "Asymptotic Distribution and Finite Sample Bias Correction of QML Estimators for Spatial Error Dependence Model," Econometrics, MDPI, vol. 3(2), pages 1-36, May.
    17. Rokhaya Dieye & Bernard Fortin, 2017. "Gender Peer Effects Heterogeneity in Obesity," Cahiers de recherche 1702, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
    18. Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: A Survey," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 603-629, August.
    19. Fei Jin & Lung-fei Lee, 2013. "Generalized Spatial Two Stage Least Squares Estimation of Spatial Autoregressive Models with Autoregressive Disturbances in the Presence of Endogenous Regressors and Many Instruments," Econometrics, MDPI, vol. 1(1), pages 1-44, May.
    20. Liu, Xiaodong & Patacchini, Eleonora & Zenou, Yves & Lee, Lung-Fei, 2011. "Criminal Networks: Who is the Key Player?," Research Papers in Economics 2011:7, Stockholm University, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:1285-1291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.