IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v173y2024ics0304414924000693.html
   My bibliography  Save this article

The concentration of zero-noise limits of invariant measures for stochastic dynamical systems

Author

Listed:
  • Dong, Zhao
  • Gu, Fan
  • Li, Liang

Abstract

We study the zero-noise concentration phenomena of invariant measures for SDE. The models are with locally Lipschitz coefficients and have more than one ergodic state. By the large deviations method and an expression of invariant measures, we estimate the invariant measures in neighborhoods of stable sets, unstable sets and their complements. Our results illustrate that the zero-noise limiting invariant measures will concentrate on the stable sets, where a cost functional W(Ki) is minimized. This implies that the long time behaviors of ODE and SDE must have different judging criteria. Furthermore, we prove the large deviations principle of invariant measures.

Suggested Citation

  • Dong, Zhao & Gu, Fan & Li, Liang, 2024. "The concentration of zero-noise limits of invariant measures for stochastic dynamical systems," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:spapps:v:173:y:2024:i:c:s0304414924000693
    DOI: 10.1016/j.spa.2024.104363
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924000693
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baldi, P. & Caramellino, L., 2011. "General Freidlin-Wentzell Large Deviations and positive diffusions," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1218-1229, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Archil Gulisashvili, 2022. "Multivariate Stochastic Volatility Models and Large Deviation Principles," Papers 2203.09015, arXiv.org, revised Nov 2022.
    2. Dan Pirjol & Jing Wang & Lingjiong Zhu, 2017. "Short Maturity Forward Start Asian Options in Local Volatility Models," Papers 1710.03160, arXiv.org.
    3. Archil Gulisashvili, 2020. "Time-inhomogeneous Gaussian stochastic volatility models: Large deviations and super roughness," Papers 2002.05143, arXiv.org, revised Dec 2020.
    4. Marc Geha & Antoine Jacquier & Zan Zuric, 2021. "Large and moderate deviations for importance sampling in the Heston model," Papers 2111.00348, arXiv.org.
    5. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2018. "Most-Likely-Path In Asian Option Pricing Under Local Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-32, August.
    6. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2017. "Most-likely-path in Asian option pricing under local volatility models," Papers 1706.02408, arXiv.org, revised Aug 2018.
    7. Archil Gulisashvili, 2018. "Gaussian stochastic volatility models: Scaling regimes, large deviations, and moment explosions," Papers 1808.00421, arXiv.org, revised Jun 2019.
    8. Gulisashvili, Archil, 2021. "Time-inhomogeneous Gaussian stochastic volatility models: Large deviations and super roughness," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 37-79.
    9. Cai, Yujie & Wang, Shaochen, 2015. "Central limit theorem and moderate deviation principle for CKLS model with small random perturbation," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 6-11.
    10. Archil Gulisashvili, 2020. "Large deviation principles for stochastic volatility models with reflection and three faces of the Stein and Stein model," Papers 2006.15431, arXiv.org.
    11. Dan Pirjol & Lingjiong Zhu, 2017. "Short Maturity Asian Options for the CEV Model," Papers 1702.03382, arXiv.org.
    12. Gulisashvili, Archil, 2020. "Gaussian stochastic volatility models: Scaling regimes, large deviations, and moment explosions," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3648-3686.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:173:y:2024:i:c:s0304414924000693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.