IDEAS home Printed from https://ideas.repec.org/p/mpr/mprres/ab85aed60a3e429786cfcbfdc37281d7.html
   My bibliography  Save this paper

Measuring Disclosure Risk and an Examination of the Possibilities of Using Synthetic Data in the Individual Income Tax Return Public Use File

Author

Listed:
  • Sonya Vartivarian
  • John L. Czajka
  • Michael Weber

Abstract

The Statistics of Income Division (SOI) currently measures disclosure risk through a distance-based technique that compares the public use file (PUF) against the population of all tax returns and uses top-coding, subsampling and multivariate microaggregation as disclosure avoidance techniques.

Suggested Citation

  • Sonya Vartivarian & John L. Czajka & Michael Weber, "undated". "Measuring Disclosure Risk and an Examination of the Possibilities of Using Synthetic Data in the Individual Income Tax Return Public Use File," Mathematica Policy Research Reports ab85aed60a3e429786cfcbfdc, Mathematica Policy Research.
  • Handle: RePEc:mpr:mprres:ab85aed60a3e429786cfcbfdc37281d7
    as

    Download full text from publisher

    File URL: https://www.mathematica.org/-/media/publications/pdfs/measuringdisclosurerisk.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schenker, Nathaniel & Raghunathan, Trivellore E. & Chiu, Pei-Lu & Makuc, Diane M. & Zhang, Guangyu & Cohen, Alan J., 2006. "Multiple Imputation of Missing Income Data in the National Health Interview Survey," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 924-933, September.
    2. Jerome P. Reiter, 2005. "Releasing multiply imputed, synthetic public use microdata: an illustration and empirical study," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(1), pages 185-205, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:mpr:mprres:5634 is not listed on IDEAS
    2. Drechsler, Jörg & Reiter, Jerome P., 2011. "An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3232-3243, December.
    3. Yongwei Chen & Dahai Fu, 2015. "Measuring income inequality using survey data: the case of China," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 13(2), pages 299-307, June.
    4. Gopalakrishnan, Raja & Guevara, C. Angelo & Ben-Akiva, Moshe, 2020. "Combining multiple imputation and control function methods to deal with missing data and endogeneity in discrete-choice models," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 45-57.
    5. Hai Zhong, 2010. "The impact of missing data in the estimation of concentration index: a potential source of bias," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 11(3), pages 255-266, June.
    6. Klein Martin & Sinha Bimal, 2013. "Statistical Analysis of Noise-Multiplied Data Using Multiple Imputation," Journal of Official Statistics, Sciendo, vol. 29(3), pages 425-465, June.
    7. Martin, Eisele & Zhu, Junyi, 2013. "Multiple imputation in a complex household survey - the German Panel on Household Finances (PHF): challenges and solutions," MPRA Paper 57666, University Library of Munich, Germany.
    8. Tatjana Miljkovic & Ying-Ju Chen, 2021. "A new computational approach for estimation of the Gini index based on grouped data," Computational Statistics, Springer, vol. 36(3), pages 2289-2311, September.
    9. Fujishiro, Kaori & Xu, Jun & Gong, Fang, 2010. "What does "occupation" represent as an indicator of socioeconomic status?: Exploring occupational prestige and health," Social Science & Medicine, Elsevier, vol. 71(12), pages 2100-2107, December.
    10. Woodcock, Simon D. & Benedetto, Gary, 2009. "Distribution-preserving statistical disclosure limitation," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4228-4242, October.
    11. Zhong, Hua & Hu, Wuyang, 2015. "Farmers’ Willingness to Engage in Best Management Practices: an Application of Multiple Imputation," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196962, Southern Agricultural Economics Association.
    12. Kilic, Talip & Zezza, Alberto & Carletto, Calogero & Savastano, Sara, 2017. "Missing(ness) in Action: Selectivity Bias in GPS-Based Land Area Measurements," World Development, Elsevier, vol. 92(C), pages 143-157.
    13. He Yulei & Shimizu Iris & Schappert Susan & Xu Jianmin & Beresovsky Vladislav & Khan Diba & Valverde Roberto & Schenker Nathaniel, 2016. "A Note on the Effect of Data Clustering on the Multiple-Imputation Variance Estimator: A Theoretical Addendum to the Lewis et al. article in JOS 2014," Journal of Official Statistics, Sciendo, vol. 32(1), pages 147-164, March.
    14. Burns, Christopher & Prager, Daniel & Ghosh, Sujit & Goodwin, Barry, 2015. "Imputing for Missing Data in the ARMS Household Section: A Multivariate Imputation Approach," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205291, Agricultural and Applied Economics Association.
    15. Zhao, Puying & Haziza, David & Wu, Changbao, 2020. "Survey weighted estimating equation inference with nuisance functionals," Journal of Econometrics, Elsevier, vol. 216(2), pages 516-536.
    16. Dong Hua & Meeden Glen, 2016. "Constructing Synthetic Samples," Journal of Official Statistics, Sciendo, vol. 32(1), pages 113-127, March.
    17. Martin Klein & Ricardo Moura & Bimal Sinha, 2021. "Multivariate Normal Inference based on Singly Imputed Synthetic Data under Plug-in Sampling," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 273-287, May.
    18. Anne Valentine & Ilhom Akobirshoev & Monika Mitra, 2019. "Intimate Partner Violence among Women with Disabilities in Uganda," IJERPH, MDPI, vol. 16(6), pages 1-13, March.
    19. Uma Radhakrishnan, 2010. "A Dynamic Structural Model of Contraceptive Use and Employment Sector Choice for Women in Indonesia," Working Papers 10-28, Center for Economic Studies, U.S. Census Bureau.
    20. Joseph W. Sakshaug & Trivellore E. Raghunathan, 2014. "Generating synthetic microdata to estimate small area statistics in the American Community Survey," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(3), pages 341-368, June.
    21. Drechsler, Jörg & Kiesl, Hans, 2014. "Beat the heap - an imputation strategy for valid inferences from rounded income data," IAB-Discussion Paper 201402, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mpr:mprres:ab85aed60a3e429786cfcbfdc37281d7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joanne Pfleiderer or Cindy George (email available below). General contact details of provider: https://edirc.repec.org/data/mathius.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.