IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v76y2006i5p470-478.html
   My bibliography  Save this article

Model misspecification effects in clustered count data analysis

Author

Listed:
  • Jowaheer, Vandna

Abstract

Clustered count data are usually analysed using Poisson mixed models based on the assumptions of either gamma distributed or log-normal distributed random effects. As it is difficult to anticipate the true mixed model, the researchers tend to make an arbitrary choice between the assumption of gamma or log-normal distribution for the random effects. This arbitrary choice may not affect the estimation of the regression parameters of the model but the efficiency of the estimates of the variance component of the random effects may however be affected to a great extent. This paper addresses this issue by examining the misspecification effects of the distributional assumptions for the random effects in the clustered data.

Suggested Citation

  • Jowaheer, Vandna, 2006. "Model misspecification effects in clustered count data analysis," Statistics & Probability Letters, Elsevier, vol. 76(5), pages 470-478, March.
  • Handle: RePEc:eee:stapro:v:76:y:2006:i:5:p:470-478
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00327-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Sutradhar, Brajendra & Das, Kalyan, 2001. "A higher-order approximation to likelihood inference in the Poisson mixed model," Statistics & Probability Letters, Elsevier, vol. 52(1), pages 59-67, March.
    2. Vandna Jowaheer, 2002. "Analysing longitudinal count data with overdispersion," Biometrika, Biometrika Trust, vol. 89(2), pages 389-399, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brajendra C. Sutradhar & Vandna Jowaheer & R. Prabhakar Rao, 2016. "Semi-Parametric Models for Negative Binomial Panel Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(2), pages 269-303, August.
    2. Yuvraj Sunecher & Naushad Mamode Khan & Miroslav M. Ristić & Vandna Jowaheer, 2019. "BINAR(1) negative binomial model for bivariate non-stationary time series with different over-dispersion indices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 625-653, December.
    3. Miroslav M. Ristić & Yuvraj Sunecher & Naushad Mamode Khan & Vandna Jowaheer, 2019. "A GQL-based inference in non-stationary BINMA(1) time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 969-998, September.
    4. N. Mamode Khan & Y. Sunecher & V. Jowaheer & M. M. Ristic & M. Heenaye-Mamode Khan, 2019. "Investigating GQL-based inferential approaches for non-stationary BINAR(1) model under different quantum of over-dispersion with application," Computational Statistics, Springer, vol. 34(3), pages 1275-1313, September.
    5. Yuvraj Sunecher & Naushad Mamode Khan, 2024. "On Comparing and Assessing Robustness of Some Popular Non-Stationary BINAR(1) Models," JRFM, MDPI, vol. 17(3), pages 1-13, February.
    6. Lee, Keunbaik & Joo, Yongsung, 2019. "Marginalized models for longitudinal count data," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 47-58.
    7. Brajendra C. Sutradhar & Nan Zheng, 2018. "Inferences in Binary Dynamic Fixed Models in a Semi-parametric Setup," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 263-291, November.
    8. Sutradhar, Brajendra C. & Jowaheer, Vandna, 2003. "On familial longitudinal Poisson mixed models with gamma random effects," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 398-412, November.
    9. Brajendra C. Sutradhar, 2008. "On forecasting counts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 109-129.
    10. Dimitris Karlis & Naushad Mamode Khan & Yuvraj Sunecher, 2024. "The Negative Binomial INAR(1) Process under Different Thinning Processes: Can We Separate between the Different Models?," Stats, MDPI, vol. 7(3), pages 1-15, July.
    11. Christoph Jeßberger, 2011. "Multilateral Environmental Agreements up to 2050: Are They Sustainable Enough?," ifo Working Paper Series 98, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    12. Ye, Fei & Yue, Chen & Yang, Ying, 2013. "Modeling time-dependent overdispersion in longitudinal count data," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 257-264.
    13. Sneddon, Gary & Sutradhar, Brajendra C., 2004. "On semiparametric familial-longitudinal models," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 369-379, September.
    14. Wan, Wai-Yin & Chan, Jennifer So-Kuen, 2011. "Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 687-702, January.
    15. Peter Hall & Hans‐Georg Müller & Fang Yao, 2008. "Modelling sparse generalized longitudinal observations with latent Gaussian processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 703-723, September.
    16. Alwell J. Oyet & Brajendra C. Sutradhar, 2021. "Analyzing Unevenly Spaced Longitudinal Count Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 342-373, November.
    17. Goncalves, M. Helena & Salome Cabral, M. & Carme Ruiz de Villa, Maria & Escrich, Eduardo & Solanas, Montse, 2007. "Likelihood approach for count data in longitudinal experiments," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6511-6520, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:76:y:2006:i:5:p:470-478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.