IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v28y2019i4d10.1007_s10260-019-00454-0.html
   My bibliography  Save this article

BINAR(1) negative binomial model for bivariate non-stationary time series with different over-dispersion indices

Author

Listed:
  • Yuvraj Sunecher

    (University of Technology Mauritius)

  • Naushad Mamode Khan

    (University of Mauritius)

  • Miroslav M. Ristić

    (University of Niš)

  • Vandna Jowaheer

    (University of Mauritius)

Abstract

The existing stationary bivariate integer-valued autoregressive model of order 1 (BINAR(1)) with correlated Negative Binomial (NB) innovations is capable of modelling stationary count series where the innovation terms of both series have same over-dispersion index. Such BINAR(1) may not be useful to model real-life series that are affected by common time-dependent covariates whereby the two series may display non-stationarity as well as different over-dispersion indices. In this paper, we propose a novel BINAR(1) model with the pair of innovations following a joint NB distribution that accommodates different over-dispersion indices. The estimation of parameters is conducted using generalized quasi-likelihood (GQL) approach that operates in two phases. Monte Carlo simulations are implemented to assess the performance of the proposed GQL under the wide range of combinations of the model parameters. This BINAR(1) model is also applied to analyze the daily series of day and night accident data in some regions of Mauritius.

Suggested Citation

  • Yuvraj Sunecher & Naushad Mamode Khan & Miroslav M. Ristić & Vandna Jowaheer, 2019. "BINAR(1) negative binomial model for bivariate non-stationary time series with different over-dispersion indices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 625-653, December.
  • Handle: RePEc:spr:stmapp:v:28:y:2019:i:4:d:10.1007_s10260-019-00454-0
    DOI: 10.1007/s10260-019-00454-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-019-00454-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-019-00454-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schweer, Sebastian & Weiß, Christian H., 2014. "Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 267-284.
    2. Brajendra C. Sutradhar, 2008. "On forecasting counts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 109-129.
    3. Taslim S. Mallick & Brajendra C. Sutradhar, 2008. "GQL Versus Conditional GQL Inferences for Non‐Stationary Time Series of Counts with Overdispersion," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 402-420, March.
    4. Xanthi Pedeli & Dimitris Karlis, 2013. "On composite likelihood estimation of a multivariate INAR(1) model," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(2), pages 206-220, March.
    5. Wei Pan, 2001. "Akaike's Information Criterion in Generalized Estimating Equations," Biometrics, The International Biometric Society, vol. 57(1), pages 120-125, March.
    6. Aleksandar S. Nastić & Petra N. Laketa & Miroslav M. Ristić, 2016. "Random environment integer-valued autoregressive process," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(2), pages 267-287, March.
    7. Vandna Jowaheer, 2002. "Analysing longitudinal count data with overdispersion," Biometrika, Biometrika Trust, vol. 89(2), pages 389-399, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingchun Zhang & Dehui Wang & Xiaodong Fan, 2020. "A negative binomial thinning‐based bivariate INAR(1) process," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(4), pages 517-537, November.
    2. Cláudia Santos & Isabel Pereira & Manuel G. Scotto, 2021. "On the theory of periodic multivariate INAR processes," Statistical Papers, Springer, vol. 62(3), pages 1291-1348, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miroslav M. Ristić & Yuvraj Sunecher & Naushad Mamode Khan & Vandna Jowaheer, 2019. "A GQL-based inference in non-stationary BINMA(1) time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 969-998, September.
    2. Brajendra C. Sutradhar & Vandna Jowaheer & R. Prabhakar Rao, 2016. "Semi-Parametric Models for Negative Binomial Panel Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(2), pages 269-303, August.
    3. N. Mamode Khan & Y. Sunecher & V. Jowaheer & M. M. Ristic & M. Heenaye-Mamode Khan, 2019. "Investigating GQL-based inferential approaches for non-stationary BINAR(1) model under different quantum of over-dispersion with application," Computational Statistics, Springer, vol. 34(3), pages 1275-1313, September.
    4. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2021. "Goodness–of–Fit Tests for Bivariate Time Series of Counts," Econometrics, MDPI, vol. 9(1), pages 1-20, March.
    5. Christoph Jeßberger, 2011. "Multilateral Environmental Agreements up to 2050: Are They Sustainable Enough?," ifo Working Paper Series 98, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    6. Alwell J. Oyet & Brajendra C. Sutradhar, 2021. "Analyzing Unevenly Spaced Longitudinal Count Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 342-373, November.
    7. Wei Pan, 2001. "Model Selection in Estimating Equations," Biometrics, The International Biometric Society, vol. 57(2), pages 529-534, June.
    8. Michael S. Rendall & Bonnie Ghosh-Dastidar & Margaret M. Weden & Zafar Nazarov, 2011. "Multiple Imputation for Combined-Survey Estimation With Incomplete Regressors In One But Not Both Surveys," Working Papers WR-887-1, RAND Corporation.
    9. Katrina N. Burns & Kan Sun & Julius N. Fobil & Richard L. Neitzel, 2016. "Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers," IJERPH, MDPI, vol. 13(1), pages 1-16, January.
    10. Song Guo & Feng Ling & Juan Hou & Jinna Wang & Guiming Fu & Zhenyu Gong, 2014. "Mosquito Surveillance Revealed Lagged Effects of Mosquito Abundance on Mosquito-Borne Disease Transmission: A Retrospective Study in Zhejiang, China," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-8, November.
    11. Laura Neumeyer & Anna Gründler & Anna-Luisa Stöber, 2023. "Don’t Worry, Be Happy—Does the CEO’s Personality Mitigate the Negative Effect of Financial Constraints on Employee Satisfaction?," Schmalenbach Journal of Business Research, Springer, vol. 75(1), pages 71-98, March.
    12. Brajendra C. Sutradhar & R. Prabhakar Rao, 2016. "Inferences in Longitudinal Count Data Models with Measurement Errors in Time Dependent Covariates," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 39-65, May.
    13. Boris Aleksandrov & Christian H. Weiß, 2020. "Parameter estimation and diagnostic tests for INMA(1) processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 196-232, March.
    14. Li, Gaorong & Lian, Heng & Feng, Sanying & Zhu, Lixing, 2013. "Automatic variable selection for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 174-186.
    15. Mark Rooij, 2018. "Transitional modeling of experimental longitudinal data with missing values," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 107-130, March.
    16. Wagner Barreto-Souza, 2019. "Mixed Poisson INAR(1) processes," Statistical Papers, Springer, vol. 60(6), pages 2119-2139, December.
    17. José M. R. Murteira & Mário A. G. Augusto, 2017. "Hurdle models of repayment behaviour in personal loan contracts," Empirical Economics, Springer, vol. 53(2), pages 641-667, September.
    18. Serge Darolles & Gaëlle Le Fol & Yang Lu & Ran Sun, 2018. "Bivariate integer-autoregressive process with an application to mutual fund flows," Post-Print hal-04590149, HAL.
    19. Aristides dos Santos, Anderson Moreira & Perelman, Julian & Jacinto, Paulo de Andrade & Tejada, Cesar Augusto Oviedo & Barros, Aluísio J.D. & Bertoldi, Andréa D. & Matijasevich, Alicia & Santos, Iná S, 2019. "Income-related inequality and inequity in children’s health care: A longitudinal analysis using data from Brazil," Social Science & Medicine, Elsevier, vol. 224(C), pages 127-137.
    20. Subhankar Chattopadhyay & Raju Maiti & Samarjit Das & Atanu Biswas, 2022. "Change‐point analysis through integer‐valued autoregressive process with application to some COVID‐19 data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 4-34, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:28:y:2019:i:4:d:10.1007_s10260-019-00454-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.