IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v28y2019i3d10.1007_s11749-018-0615-1.html
   My bibliography  Save this article

A GQL-based inference in non-stationary BINMA(1) time series

Author

Listed:
  • Miroslav M. Ristić

    (University of Niš)

  • Yuvraj Sunecher

    (University of Technology Mauritius)

  • Naushad Mamode Khan

    (University of Mauritius)

  • Vandna Jowaheer

    (University of Mauritius)

Abstract

This paper introduces a non-stationary bivariate integer-valued moving average of first-order (BINMA(1)) model with corresponding negative binomial innovations under different levels of over-dispersion that are pairwise unrelated. In the proposed BINMA(1), the interrelation between the series is induced by the relation of the current observation with the previous-lagged innovation of the other series, while the non-stationarity is captured through the time-variant covariate specification. Under such condition, the likelihood construction is cumbersome to formulate. Thus, a generalized quasi-likelihood equation based on an exact auto-covariance specification via multivariate thinning structures is proposed to estimate the regression, over-dispersion and dependence effects, and its performance and efficiency measures are compared with other common established techniques: generalized least squares and generalized method of moment based on simulated data from the proposed model under different scenarios of over-dispersion and serial coefficients. The model is further applied to analyze the intraday transactions of two major banks in Mauritius.

Suggested Citation

  • Miroslav M. Ristić & Yuvraj Sunecher & Naushad Mamode Khan & Vandna Jowaheer, 2019. "A GQL-based inference in non-stationary BINMA(1) time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 969-998, September.
  • Handle: RePEc:spr:testjl:v:28:y:2019:i:3:d:10.1007_s11749-018-0615-1
    DOI: 10.1007/s11749-018-0615-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-018-0615-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-018-0615-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei Pan, 2001. "Akaike's Information Criterion in Generalized Estimating Equations," Biometrics, The International Biometric Society, vol. 57(1), pages 120-125, March.
    2. Schweer, Sebastian & Weiß, Christian H., 2014. "Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 267-284.
    3. repec:aer:wpaper:227 is not listed on IDEAS
    4. Quoreshi, A.M.M. Shahiduzzaman, 2008. "A vector integer-valued moving average model for high frequency financial count data," Economics Letters, Elsevier, vol. 101(3), pages 258-261, December.
    5. Vandna Jowaheer, 2002. "Analysing longitudinal count data with overdispersion," Biometrika, Biometrika Trust, vol. 89(2), pages 389-399, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cláudia Santos & Isabel Pereira & Manuel G. Scotto, 2021. "On the theory of periodic multivariate INAR processes," Statistical Papers, Springer, vol. 62(3), pages 1291-1348, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuvraj Sunecher & Naushad Mamode Khan & Miroslav M. Ristić & Vandna Jowaheer, 2019. "BINAR(1) negative binomial model for bivariate non-stationary time series with different over-dispersion indices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 625-653, December.
    2. Wei Pan, 2001. "Model Selection in Estimating Equations," Biometrics, The International Biometric Society, vol. 57(2), pages 529-534, June.
    3. Michael S. Rendall & Bonnie Ghosh-Dastidar & Margaret M. Weden & Zafar Nazarov, 2011. "Multiple Imputation for Combined-Survey Estimation With Incomplete Regressors In One But Not Both Surveys," Working Papers WR-887-1, RAND Corporation.
    4. A. M. M. Shahiduzzaman Quoreshi & Reaz Uddin & Naushad Mamode Khan, 2019. "Quasi-Maximum Likelihood Estimation for Long Memory Stock Transaction Data—Under Conditional Heteroskedasticity Framework," JRFM, MDPI, vol. 12(2), pages 1-13, April.
    5. Katrina N. Burns & Kan Sun & Julius N. Fobil & Richard L. Neitzel, 2016. "Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers," IJERPH, MDPI, vol. 13(1), pages 1-16, January.
    6. Song Guo & Feng Ling & Juan Hou & Jinna Wang & Guiming Fu & Zhenyu Gong, 2014. "Mosquito Surveillance Revealed Lagged Effects of Mosquito Abundance on Mosquito-Borne Disease Transmission: A Retrospective Study in Zhejiang, China," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-8, November.
    7. Laura Neumeyer & Anna Gründler & Anna-Luisa Stöber, 2023. "Don’t Worry, Be Happy—Does the CEO’s Personality Mitigate the Negative Effect of Financial Constraints on Employee Satisfaction?," Schmalenbach Journal of Business Research, Springer, vol. 75(1), pages 71-98, March.
    8. Boris Aleksandrov & Christian H. Weiß, 2020. "Parameter estimation and diagnostic tests for INMA(1) processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 196-232, March.
    9. Li, Gaorong & Lian, Heng & Feng, Sanying & Zhu, Lixing, 2013. "Automatic variable selection for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 174-186.
    10. Mark Rooij, 2018. "Transitional modeling of experimental longitudinal data with missing values," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 107-130, March.
    11. Wagner Barreto-Souza, 2019. "Mixed Poisson INAR(1) processes," Statistical Papers, Springer, vol. 60(6), pages 2119-2139, December.
    12. José M. R. Murteira & Mário A. G. Augusto, 2017. "Hurdle models of repayment behaviour in personal loan contracts," Empirical Economics, Springer, vol. 53(2), pages 641-667, September.
    13. Aristides dos Santos, Anderson Moreira & Perelman, Julian & Jacinto, Paulo de Andrade & Tejada, Cesar Augusto Oviedo & Barros, Aluísio J.D. & Bertoldi, Andréa D. & Matijasevich, Alicia & Santos, Iná S, 2019. "Income-related inequality and inequity in children’s health care: A longitudinal analysis using data from Brazil," Social Science & Medicine, Elsevier, vol. 224(C), pages 127-137.
    14. Brajendra C. Sutradhar & Vandna Jowaheer & R. Prabhakar Rao, 2016. "Semi-Parametric Models for Negative Binomial Panel Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(2), pages 269-303, August.
    15. Subhankar Chattopadhyay & Raju Maiti & Samarjit Das & Atanu Biswas, 2022. "Change‐point analysis through integer‐valued autoregressive process with application to some COVID‐19 data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 4-34, February.
    16. Christian H. Weiß & Sebastian Schweer, 2015. "Detecting overdispersion in INARCH(1) processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 281-297, August.
    17. Wooi Chen Khoo & Seng Huat Ong & Atanu Biswas, 2017. "Modeling time series of counts with a new class of INAR(1) model," Statistical Papers, Springer, vol. 58(2), pages 393-416, June.
    18. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    19. Pedeli, Xanthi & Karlis, Dimitris, 2013. "Some properties of multivariate INAR(1) processes," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 213-225.
    20. Bastian Rake, 2017. "Determinants of pharmaceutical innovation: the role of technological opportunities revisited," Journal of Evolutionary Economics, Springer, vol. 27(4), pages 691-727, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:28:y:2019:i:3:d:10.1007_s11749-018-0615-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.