IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v43y2009i8p744-754.html
   My bibliography  Save this article

Methods of analysis for vehicle soak time data

Author

Listed:
  • Gao, H. Oliver
  • Johnson, Lynn Schooley

Abstract

Vehicle soak time, the duration of time a vehicle's engine is at rest prior to being started, and its distribution function are important transportation activity data inputs for mobile emissions inventory estimation due to their impacts on vehicle start and evaporative emissions. This paper provides vehicle emission researchers with an overview of statistical analysis methods relevant to analyzing vehicle soak time data. Many of these methods are already in use in emissions research and have appeared in the literature. These methods are reviewed and further details regarding the implementation and interpretation of these methods are provided. Statistical methods relevant to the analysis of soak time data that have yet to appear in the emissions literature, including kernel density estimation and generalized linear models, are also introduced. Advantages and disadvantages of the methods are compared and theoretical justification is provided. Issues of correlated observations and censored data are discussed. General guidelines for the analysis of soak time data, such as stratification by start type and geographical region, are established. Finally, a subset of the statistical methods discussed is used to analyze the US Environmental Protection Agency's 3-city data.

Suggested Citation

  • Gao, H. Oliver & Johnson, Lynn Schooley, 2009. "Methods of analysis for vehicle soak time data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(8), pages 744-754, October.
  • Handle: RePEc:eee:transa:v:43:y:2009:i:8:p:744-754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(09)00070-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marron, J. S. & Nolan, D., 1988. "Canonical kernels for density estimation," Statistics & Probability Letters, Elsevier, vol. 7(3), pages 195-199, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Xiaobo & Karimpour, Abolfazl & Wu, Yao-Jan, 2020. "Statistical evaluation of data requirement for ramp metering performance assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 248-261.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
    2. Camelia Minoiu & Sanjay Reddy, 2014. "Kernel density estimation on grouped data: the case of poverty assessment," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 12(2), pages 163-189, June.
    3. Gatfaoui, Hayette, 2013. "Translating financial integration into correlation risk: A weekly reporting's viewpoint for the volatility behavior of stock markets," Economic Modelling, Elsevier, vol. 30(C), pages 776-791.
    4. M. M. Salinas-Jimenez, 2003. "Technological change, efficiency gains and capital accumulation in labour productivity growth and convergence: an application to the Spanish regions," Applied Economics, Taylor & Francis Journals, vol. 35(17), pages 1839-1851.
    5. Grith, Maria & Härdle, Wolfgang Karl & Schienle, Melanie, 2010. "Nonparametric estimation of risk-neutral densities," SFB 649 Discussion Papers 2010-021, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Langrené, Nicolas & Warin, Xavier, 2021. "Fast multivariate empirical cumulative distribution function with connection to kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    7. Ezcurra, Roberto, 2007. "Is there cross-country convergence in carbon dioxide emissions?," Energy Policy, Elsevier, vol. 35(2), pages 1363-1372, February.
    8. Roberto Ezcurra & Pedro Pascual, 2007. "Regional Polarisation and National Development in the European Union," Urban Studies, Urban Studies Journal Limited, vol. 44(1), pages 99-122, January.
    9. Giorgio Canarella & Stephen Pollard, 2006. "Distribution dynamics and convergence in Latin America: A non-parametric analysis," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 53(1), pages 68-95, March.
    10. Ms. Camelia Minoiu & Sanjay Reddy, 2008. "Kernel Density Estimation Based on Grouped Data: The Case of Poverty Assessment," IMF Working Papers 2008/183, International Monetary Fund.
    11. Härdle, Wolfgang & Müller, Marlene, 1997. "Multivariate and semiparametric kernel regression," SFB 373 Discussion Papers 1997,26, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    12. repec:hum:wpaper:sfb649dp2010-021 is not listed on IDEAS
    13. Fousekis, Panos & Lazaridis, Panagiotis, 2001. "Food Expenditure Patterns of the Urban and the Rural Households in Greece. A Kernel Regression Analysis," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 2(1), pages 1-16, January.
    14. Konstantin Gluschenko, 2016. "Distribution dynamics of Russian regional prices," Empirical Economics, Springer, vol. 51(3), pages 1193-1213, November.
    15. Arnerić Josip, 2020. "Realized density estimation using intraday prices," Croatian Review of Economic, Business and Social Statistics, Sciendo, vol. 6(1), pages 1-9, May.
    16. Paul Deheuvels & David Mason, 2004. "General Asymptotic Confidence Bands Based on Kernel-type Function Estimators," Statistical Inference for Stochastic Processes, Springer, vol. 7(3), pages 225-277, October.
    17. Duong, Tarn, 2015. "Spherically symmetric multivariate beta family kernels," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 141-145.
    18. Ezcurra, Roberto, 2007. "Distribution dynamics of energy intensities: A cross-country analysis," Energy Policy, Elsevier, vol. 35(10), pages 5254-5259, October.
    19. Delaigle, Aurore & Hall, Peter, 2006. "On optimal kernel choice for deconvolution," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1594-1602, September.
    20. Nils-Bastian Heidenreich & Anja Schindler & Stefan Sperlich, 2013. "Bandwidth selection for kernel density estimation: a review of fully automatic selectors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 403-433, October.
    21. Zhengwu Zhang & Eric Klassen & Anuj Srivastava, 2019. "Robust Comparison of Kernel Densities on Spherical Domains," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 144-171, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:43:y:2009:i:8:p:744-754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.