IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v68y2004i1p73-82.html
   My bibliography  Save this article

A note on margin-based loss functions in classification

Author

Listed:
  • Lin, Yi

Abstract

In many classification procedures, the classification function is obtained by minimizing a certain empirical risk on the training sample. The classification is then based on the sign of the classification function. In recent years, there have been a host of classification methods proposed that use different margin-based loss functions. The margin-based loss functions are often motivated as upper bounds of the misclassification loss, but this cannot explain the statistical properties of the classification procedures. We show that a large family of margin-based loss functions are Fisher consistent for classification. That is, the population minimizer of the loss function leads to the Bayes optimal rule of classification. Our result covers almost all margin-based loss functions that have been proposed in the literature. We give an inequality that links the Fisher consistency of margin-based loss functions with the consistency of methods based on these loss functions. We use this inequality to obtain the rate of convergence for the method of sieves based on a class of margin-based loss functions.

Suggested Citation

  • Lin, Yi, 2004. "A note on margin-based loss functions in classification," Statistics & Probability Letters, Elsevier, vol. 68(1), pages 73-82, June.
  • Handle: RePEc:eee:stapro:v:68:y:2004:i:1:p:73-82
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00070-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buhlmann P. & Yu B., 2003. "Boosting With the L2 Loss: Regression and Classification," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 324-339, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam N. Elmachtoub & Paul Grigas, 2022. "Smart “Predict, then Optimize”," Management Science, INFORMS, vol. 68(1), pages 9-26, January.
    2. Yang, Yi & Guo, Yuxuan & Chang, Xiangyu, 2021. "Angle-based cost-sensitive multicategory classification," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    3. Chen, Zhongyuan & Xie, Jun, 2023. "Estimating heterogeneous treatment effects versus building individualized treatment rules: Connection and disconnection," Statistics & Probability Letters, Elsevier, vol. 199(C).
    4. Hayashi, Kenichi, 2012. "A simple extension of boosting for asymmetric mislabeled data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 348-356.
    5. Ling Peng & Xiaohui Liu & Xiangyong Tan & Yiweng Zhou & Shihua Luo, 2024. "The statistical rate for support matrix machines under low rankness and row (column) sparsity," Statistical Papers, Springer, vol. 65(7), pages 4567-4598, September.
    6. Xiangyu Chang & Yinghui Huang & Mei Li & Xin Bo & Subodha Kumar, 2021. "Efficient Detection of Environmental Violators: A Big Data Approach," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1246-1270, May.
    7. Seokho Lee & Hyejin Shin & Sang Han Lee, 2016. "Label‐noise resistant logistic regression for functional data classification with an application to Alzheimer's disease study," Biometrics, The International Biometric Society, vol. 72(4), pages 1325-1335, December.
    8. Nam Ho-Nguyen & Fatma Kılınç-Karzan, 2022. "Risk Guarantees for End-to-End Prediction and Optimization Processes," Management Science, INFORMS, vol. 68(12), pages 8680-8698, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Klaus Wohlrabe & Teresa Buchen, 2014. "Assessing the Macroeconomic Forecasting Performance of Boosting: Evidence for the United States, the Euro Area and Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 231-242, July.
    3. Ivan Chang, Yuan-Chin & Huang, Yufen & Huang, Yu-Pai, 2010. "Early stopping in L2Boosting," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2203-2213, October.
    4. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
    5. Bissantz, Nicolai & Hohage, T. & Munk, Axel & Ruymgaart, F., 2007. "Convergence rates of general regularization methods for statistical inverse problems and applications," Technical Reports 2007,04, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Kea BARET, 2021. "Fiscal rules’ compliance and Social Welfare," Working Papers of BETA 2021-38, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    7. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    8. Shafik, Nivien & Tutz, Gerhard, 2009. "Boosting nonlinear additive autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2453-2464, May.
    9. Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    10. Kevin He & Ji Zhu & Jian Kang & Yi Li, 2022. "Stratified Cox models with time‐varying effects for national kidney transplant patients: A new blockwise steepest ascent method," Biometrics, The International Biometric Society, vol. 78(3), pages 1221-1232, September.
    11. Tutz, Gerhard & Leitenstorfer, Florian, 2006. "Response shrinkage estimators in binary regression," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2878-2901, June.
    12. Leitenstorfer, Florian & Tutz, Gerhard, 2007. "Knot selection by boosting techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4605-4621, May.
    13. Martijn Kagie & Michiel Van Wezel, 2007. "Hedonic price models and indices based on boosting applied to the Dutch housing market," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 85-106, July.
    14. Sigrist, Fabio & Hirnschall, Christoph, 2019. "Grabit: Gradient tree-boosted Tobit models for default prediction," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 177-192.
    15. R. Lehmann & K. Wohlrabe, 2016. "Looking into the black box of boosting: the case of Germany," Applied Economics Letters, Taylor & Francis Journals, vol. 23(17), pages 1229-1233, November.
    16. Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
    17. Hofner, Benjamin & Mayr, Andreas & Schmid, Matthias, 2016. "gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i01).
    18. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
    19. Sariyar Murat & Schumacher Martin & Binder Harald, 2014. "A boosting approach for adapting the sparsity of risk prediction signatures based on different molecular levels," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(3), pages 343-357, June.
    20. Ziwei Mei & Zhentao Shi & Peter C. B. Phillips, 2022. "The boosted HP filter is more general than you might think," Cowles Foundation Discussion Papers 2348, Cowles Foundation for Research in Economics, Yale University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:68:y:2004:i:1:p:73-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.