Estimating heterogeneous treatment effects versus building individualized treatment rules: Connection and disconnection
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2023.109854
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Lin, Yi, 2004. "A note on margin-based loss functions in classification," Statistics & Probability Letters, Elsevier, vol. 68(1), pages 73-82, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Carlos Fernández-Loría & Foster Provost & Jesse Anderton & Benjamin Carterette & Praveen Chandar, 2023. "A Comparison of Methods for Treatment Assignment with an Application to Playlist Generation," Information Systems Research, INFORMS, vol. 34(2), pages 786-803, June.
- Engel, Christoph, 2020.
"Estimating heterogeneous reactions to experimental treatments,"
Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 124-147.
- Christoph Engel, 2019. "Estimating Heterogeneous Reactions to Experimental Treatments," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2019_01, Max Planck Institute for Research on Collective Goods.
- Carlos Fernández-Loría & Foster Provost, 2022. "Causal Decision Making and Causal Effect Estimation Are Not the Same…and Why It Matters," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 4-16, April.
- Anya Shchetkina & Ron Berman, 2024. "When Is Heterogeneity Actionable for Personalization?," Papers 2411.16552, arXiv.org.
- Shi, Chengchun & Wan, Runzhe & Song, Ge & Luo, Shikai & Zhu, Hongtu & Song, Rui, 2023. "A multiagent reinforcement learning framework for off-policy evaluation in two-sided markets," LSE Research Online Documents on Economics 117174, London School of Economics and Political Science, LSE Library.
- Nathan Kallus, 2023. "Treatment Effect Risk: Bounds and Inference," Management Science, INFORMS, vol. 69(8), pages 4579-4590, August.
- Augustine Denteh & Helge Liebert, 2022.
"Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment,"
Working Papers
2201, Tulane University, Department of Economics.
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," CESifo Working Paper Series 9664, CESifo.
- Denteh, Augustine & Liebert, Helge, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," IZA Discussion Papers 15192, Institute of Labor Economics (IZA).
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Papers 2201.07072, arXiv.org, revised Apr 2023.
- Hyung G. Park & Danni Wu & Eva Petkova & Thaddeus Tarpey & R. Todd Ogden, 2023. "Bayesian Index Models for Heterogeneous Treatment Effects on a Binary Outcome," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 397-418, July.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2022.
"Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach,"
Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 597-636.
- Michael Knaus & Michael Lechner & Anthony Strittmatter, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," Papers 1709.10279, arXiv.org, revised May 2018.
- Lechner, Michael & Strittmatter, Anthony & Knaus, Michael C., 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," CEPR Discussion Papers 12224, C.E.P.R. Discussion Papers.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," IZA Discussion Papers 10961, Institute of Labor Economics (IZA).
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," Economics Working Paper Series 1711, University of St. Gallen, School of Economics and Political Science.
- Nathan Kallus, 2022. "Treatment Effect Risk: Bounds and Inference," Papers 2201.05893, arXiv.org, revised Jul 2022.
- Baojiang Chen & Ao Yuan & Jing Qin, 2022. "Pool adjacent violators algorithm–assisted learning with application on estimating optimal individualized treatment regimes," Biometrics, The International Biometric Society, vol. 78(4), pages 1475-1488, December.
- Christopher Adjaho & Timothy Christensen, 2022. "Externally Valid Policy Choice," Papers 2205.05561, arXiv.org, revised Jul 2023.
- Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
- Lechner, Michael, 2018.
"Modified Causal Forests for Estimating Heterogeneous Causal Effects,"
IZA Discussion Papers
12040, Institute of Labor Economics (IZA).
- Lechner, Michael, 2019. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," CEPR Discussion Papers 13430, C.E.P.R. Discussion Papers.
- Lechner, Michael, 2019. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," Economics Working Paper Series 1901, University of St. Gallen, School of Economics and Political Science.
- Michael Lechner, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," Papers 1812.09487, arXiv.org, revised Jul 2019.
- William Arbour, 2021. "Can Recidivism be Prevented from Behind Bars? Evidence from a Behavioral Program," Working Papers tecipa-683, University of Toronto, Department of Economics.
- Steven F. Lehrer & Tian Xie, 2022.
"The Bigger Picture: Combining Econometrics with Analytics Improves Forecasts of Movie Success,"
Management Science, INFORMS, vol. 68(1), pages 189-210, January.
- Steven F. Lehrer & Tian Xie, 2018. "The Bigger Picture: Combining Econometrics with Analytics Improve Forecasts of Movie Success," NBER Working Papers 24755, National Bureau of Economic Research, Inc.
- Steven Lehrer & Tian Xie, 2020. "The Bigger Picture: Combining Econometrics with Analytics Improve Forecasts of Movie Success," Working Paper 1449, Economics Department, Queen's University.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
- Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
- Uguccioni, James, 2022. "The long-run effects of parental unemployment in childhood," CLEF Working Paper Series 45, Canadian Labour Economics Forum (CLEF), University of Waterloo.
More about this item
Keywords
Heterogeneous treatment effects; Individualized treatment rules; Mean squared error; Misclassification error;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:199:y:2023:i:c:s0167715223000780. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.